Due to the nature of holoscopic 3D (H3D) imaging technology, H3D cameras can capture more angular information than their conventional 2D counterparts. This is mainly attributed to the macrolens array which captures the 3D scene with slightly different viewing angles and generates holoscopic elemental images based on fly’s eyes imaging concept. However, this advantage comes at the cost of decreasing the spatial resolution in the reconstructed images. On the other hand, the consumer market is looking to find an efficient multiview capturing solution for the commercially available autostereoscopic displays. The autostereoscopic display provides multiple viewers with the ability to simultaneously enjoy a 3D viewing experience without the need for wearing 3D display glasses. This paper proposes a low-delay content adaptation framework for converting a single holoscopic 3D computer-generated image into multiple viewpoint images. Furthermore, it investigates the effects of varying interpolation step sizes on the converted multiview images using the nearest neighbour and bicubic sampling interpolation techniques. In addition, it evaluates the effects of changing the macrolens array size, using the proposed framework, on the perceived visual quality both objectively and subjectively. The experimental work is conducted on computer-generated H3D images with different macrolens sizes. The experimental results show that the proposed content adaptation framework can be used to capture multiple viewpoint images to be visualised on autostereoscopic displays.
Museums and cultural institutions, in general, are in a constant challenge of adding more value to their collections. The attractiveness of assets is practically tightly related to their value obeying the offer and demand law. New digital visualization technologies are found to give more excitements, especially to the younger generation as it is proven by multiple studies. Nowadays, museums around the world are currently trying to promote their collections through new multimedia and digital technologies such as 3D modeling, Virtual Reality (VR), Augmented Reality (AR), serious games, etc. However, the difficulty and the resources required to implement such technologies present a real challenge. Through this paper, we propose a 3D acquisition and visualization framework aiming mostly at increasing the value of cultural collections. This framework preserves cost-effectiveness and time constraints while still introducing new ways of visualization and interaction with high-quality 3D models of cultural objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.