Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation.
Polymerization and organization of actin into complex superstructures, including those found in dendritic spines, is indispensable for structure and function of neuronal networks. Here we show that the filamentous actin (F-actin)-binding protein 1 (Abp1), which controls Arp2/3 complex-mediated actin nucleation and binds to postsynaptic scaffold proteins of the ProSAP (proline-rich synapse-associated protein 1)/Shank family, has a profound impact on synaptic organization. Overexpression of the two Abp1 F-actin-binding domains increases the length of thin, filopodia-like and mushroom-type spines but dramatically reduces mushroom spine density, attributable to lack of the Abp1 Src homology 3 (SH3) domain. In contrast, overexpression of full-length Abp1 increases mushroom spine and synapse density. The SH3 domain alone has a dominant-negative effect on mushroom spines, whereas the density of filopodia and thin, immature spines remains unchanged. This suggests that both actin-binding and SH3 domain interactions are crucial for the role of Abp1 in spine maturation. Indeed, Abp1 knockdown significantly reduces mushroom spine and synapse density. Abp1 hereby works in close conjunction with ProSAP1/Shank2 and ProSAP2/Shank3, because Abp1 effects were suppressed by ProSAP2 RNA interference and the ProSAP/ Shank-induced increase of spine head width is further promoted by Abp1 cooverexpression and reduced on Abp1 knockdown. Also, interfering with the formation of functional Abp1-ProSAP protein complexes prevents ProSAP-mediated spine head extension. Spine head extension furthermore depends on local Arp2/3 complex-mediated actin polymerization, which is controlled by Abp1 via the Arp2/3 complex activator N-WASP (neural Wiskott-Aldrich syndrome protein). Abp1 thus plays an important role in the formation and morphology control of synapses by making a required functional connection between postsynaptic density components and postsynaptic actin dynamics.
Purpose To synthesize two low-molecular-weight iron chelates and compare their T1 contrast effects with those of a commercial gadolinium-based contrast agent for their applicability in dynamic contrast material-enhanced (DCE) magnetic resonance (MR) imaging. Materials and Methods The animal experiments were approved by the local ethics committee. Two previously described iron (Fe) chelates of pentetic acid (Fe-DTPA) and of trans-cyclohexane diamine tetraacetic acid (Fe-tCDTA) were synthesized with stability constants several orders of magnitude higher than those of gadolinium-based contrast agents. The T1 contrast effects of the two chelates were compared with those of gadopentetate dimeglumine in blood serum phantoms at 1.5 T, 3 T, and 7 T. For in vivo studies, a human breast cancer cell line (MDA-231) was implanted in five mice per group. The dynamic contrast effects of the chelates were compared by performing DCE MR imaging with intravenous application of Fe-DTPA or Fe-tCDTA on day 1 and DCE MR imaging in the same tumors with gadopentetate dimeglumine on day 2. Quantitative DCE maps were generated with software and were compared by means of a one-tailed Pearson correlation test. Results Relaxivities in serum (0.94 T at room temperature) of Fe-tCDTA (r1 = 2.2 mmol · sec, r2 = 2.5 mmol · sec) and Fe-DTPA (r1 = 0.9 mmol · sec, r2 = 0.9 mmol · sec) were approximately twofold and fivefold lower, respectively, compared with those of gadopentetate dimeglumine (r1 = 4.1 mmol · sec, r2 = 4.8 mmol · sec). Used at moderately higher concentrations, however, iron chelates generated similar contrast effects at T1-weighted MR imaging in vitro in serum, in vivo in blood, and for DCE MR imaging of breast cancer xenografts. The volume transfer constant values for Fe-DTPA and Fe-tCDTA in the same tumors correlated well with those observed for gadopentetate dimeglumine (Fe-tCDTA Pearson R, 0.99; P = .0003; Fe-DTPA Pearson R, 0.97; P = .003). Conclusion Iron-based contrast agents are promising as alternatives for contrast enhancement at T1-weighted MR imaging and have the potential to contribute to the safety of MR imaging. RSNA, 2017 Online supplemental material is available for this article.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.