In this paper we examine and compare the efficiency of four European electricity markets (NordPool, Italian, Spanish and Greek) of different microstructure and level of maturity, by testing the weak form of the Efficient Market Hypothesis (EMH). To quantify the level of efficiency deviation of each market from the ‘ideal’ or ‘benchmark market of random walk’, we have constructed a Composite Electricity Market Efficiency Index (EMEI), inspired by similar works on other energy commodities. The proposed index consists of linear and nonlinear components each one measuring a different feature or dimension of the market efficiency such as its complexity, fractality, entropy, long-term memory or correlation, all connected to the associated benchmark values of the Random Walk Process (RWP). The key findings are that overall, all examined electricity markets are inefficient in respect to the weak form of EMH and the less inefficient market, as measured by the EMEI is the NordPool, closely followed by the Spanish market, with the Italian being the third. The most inefficient market is the Greek one. These results are in accordance with the predominant view about the maturity of these markets. This study contributes significantly on improving the research framework in developing consistent and robust tools for efficiency measurement, while the proposed index can be a valuable tool in designing improved guidelines towards enhancing the efficiency of electricity markets.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The large-scale integration of variable renewable energy (VRE) in power systems, such as wind and solar, increases the flexibility needed to maintain the load-generation balance. In order for the power operators to plan for secure and reliable operation, they must examine whether there exists sufficient power system flexibility to meet ramps caused by the increased VRE integration and the system demand. In this context, the paper aims to propose an improved flexibility metric to accurately evaluate the flexibility level of a power system in the planning stage. The proposed metric is based on kernel density estimators and expresses the probability of the flexibility residual (the difference between the available flexibility and the expected net load ramps) being less than zero. The Greek power system is used as case study in order to evaluate the proposed index. In particular, the unit commitment optimization problem with flexibility constraints for ten different scenarios based on the ENTSO-E methodology for the time period 2020-2024 is solved and then the proposed metric is calculated. Finally, this index is compared to the well known insufficient ramping resource expectation (IRRE) metric to further evaluate it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.