Dentatin (DEN), purified from the roots of Clausena excavata Burm f., has poor aqueous solubility that reduces its therapeutic application. The aim of this study was to assess the effects of DEN-HPβCD (hydroxypropyl-β-cyclodextrin) complex as an anticancer agent in HT29 cancer cell line and compare with a crystal DEN in dimethyl sulfoxide (DMSO). The exposure of the cancer cells to DEN or DEN-HPβCD complex leads to cell growth inhibition as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To analyze the mechanism, in which DEN or DEN-HPβCD complex causes the death in human colon HT29 cancer cells, was evaluated by the enzyme-linked immunosorbent assay (ELIZA)-based assays for caspase-3, 8, 9, and reactive oxygen species (ROS). The findings showed that an anti-proliferative effect of DEN or DEN-HPβCD complex were via cell cycle arrest at the G2/M phase and eventually induced apoptosis through both mitochondrial and extrinsic pathways. The down-regulation of poly(ADP-ribose) polymerase (PARP) which leaded to apoptosis upon treatment, was investigated by Western-blotting. Hence, complexation between DEN and HPβCD did not diminish or eliminate the effective properties of DEN as anticancer agent. Therefore, it would be possible to resolve the conventional and current issues associated with the development and commercialization of antineoplastic agents in the future.
This current work has been conducted mainly to increase solubility and drug release properties for high hydrophobic Dentatin (DEN) by incorporation it into Hydroxypropyl-β-Cyclodextrin (HPβCD) cavity. To confirm that inclusion be succeeded, the produced complex were installed onto different machines. The latter includes: Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and field emission-scanning electron microscopy (FE-SEM). The hydrodynamic diameter and zeta potential of DEN-HPβCD complex were 2.025 ± 0.39 nm and −33.6 mV, respectively. Ultraviolet spectroscopy was employed to further confirmation of complexation process as well as to determine drug release profile. The result showed an initial burst release (19.9% within first two minutes) and then a continuous release for an extended period of 41 h (100%). The solubility of DEN was enhanced by >300 fold following complexation when a compared to DEN alone. Moreover, MTT finding showed that this complexation did not reduce cytotoxicity of DEN after applying on prostate cancer (LNCaP), human adenocarcinoma breast cancer (MDA-MB-231) and human gastric adenocarcinoma cell line (HDT). However, further investigations are required to validate efficacy of our produced inclusion using molecular analysis and in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.