The focus of this thesis is to review the three basic penalty estimators, namely, ridge regression estimator, LASSO, and elastic net estimator in the light of the deficiencies of least-squares estimator. Ill-conditioned design matrix is the major source of problem in this case. To overcome this problem, ridge regression was developed, and it opened the door for penalty estimators. Its impact is visible with various linear and non-linear models. A superb discovery in the class of subset selection is the LASSO (Least Absolute Shrinkage and Selection Operator) which selects subsets and estimates the coefficients simultaneously. Finally, we consider the elastic net penalty estimator which combine the L 1 and L 2 penalty function. Resulting estimator is weighted LASSO by ridge factor. We obtain the L 2 -risk expressions and compare with pre-test and Stein-type estimators. For the location model, we discovered that the naive elastic net is better than elastic net estimators as opposed to the conclusion in the current literature. On the other hand in case of regression model, the elastic net performs reasonably compared to LASSO and ridge regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.