Appropriate emergency disaster preparedness is a key priority for agricultural agencies to allow effective response to serious avian disease outbreaks. There is a need to develop rapid, humane, and safe depopulation techniques for poultry that are widely applicable across a range of farm settings. Whole barn depopulation with carbon dioxide (CO(2)) has been investigated as a humane and efficient means of killing large numbers of birds in the event of a reportable disease outbreak. It has also been considered as a method for depopulating barns containing end-of-lay hens, particularly when there is limited local slaughter and rendering capacity. Determining the best method of humanely killing large flocks of birds remains problematic and is being investigated by a coordinated international effort. While whole barn depopulation using CO(2) inhalation has been explored, physiologic responses of chickens have not been characterized in field settings and assessment of animal welfare is hampered without this information. In this study, 12 cull laying hens were surgically instrumented with telemetry transmitters to record electroencephalographs, electrocardiographs, body temperature, and activity during 2 large-scale field CO(2) euthanasia trials of end-of-lay hens. The day following surgery, instrumented hens were placed in barns with other birds, barns were sealed, and animals were killed by CO(2) inhalation delivered via a specially designed liquid CO(2) manifold. Instrumented birds were monitored by infrared thermography, and ambient temperature, CO(2), and O(2) concentrations were recorded. Results from these studies indicate that instrumented hens lost consciousness within 2 min of CO(2) levels reaching 18 to 20%. Mild to moderate head shaking, gasping, and 1 to 2 clonic muscle contractions were noted in hens before unconsciousness; however, brain death followed rapidly (<5 min). Evaluation of welfare costs and benefits suggest clear advantages over catching and transporting cull hens for slaughter. The financial costs with this method are greater, however, than those estimated for traditional slaughter techniques. Results of these studies are being used to develop national protocols for whole barn depopulation of hens by CO(2) inhalation.
The lesser mealworm, Alphitobius diaperinus (Panzer), damages poultry barns, vectors poultry diseases, inhibits poultry weight gain, and consumes poultry feed. Management of the pest is a challenge because of its resistance to several insecticides, difficulty in treating infestations that can be concealed in locations within barns, and the high populations that occur around spilled poultry feed. However, few A. diaperinus were observed in Miscanthus × giganteus straw in a case where it was used as an alternative bedding material in open-floor poultry production in Ontario. To investigate this, we tested the effects of Miscanthus × giganteus and wheat straw on A. diaperinus behavior, survival, and growth in laboratory experiments. In these experiments, adult beetles preferred to inhabit wheat straw, whereas late-instar larvae preferred Miscanthus × giganteus As a result, more adult beetles emerged from pupae in Miscanthus × giganteus than in wheat, but there was no difference in emerged beetle weight. Early-instar larvae survived and increased in weight at similar rates in both straw types. Thus, while adult A. diaperinus strongly preferred wheat straw given a choice, late-instar preference and pupae emergence suggest that Miscanthus × giganteus may not be useful for suppressing A. diaperinus populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.