Thrombopoietin (TPO) is a cytokine that is involved in the regulation of platelet production. The receptor for TPO is c-Mpl. To further investigate the role and specificity of this receptor in regulating megakaryocytopoiesis, c-mpl-deficient mice were generated by gene targeting. The c-mpl-/- mice had an 85 percent decrease in their number of platelets and megakaryocytes but had normal amounts of other hematopoietic cell types. These mice also had increased concentrations of circulating TPO. These results show that c-mpl specifically regulates megakaryocytopoiesis and thrombopoiesis through activation by its ligand TPO.
The involvement of platelets and the c-mpl receptor in the regulation of thrombopoietin (TPO) plasma concentrations and tissue mRNA levels was investigated in both normal mice and mice defective in c-mpl (c-mpl- /-). Although c-mpl-/- mice have fewer platelets and higher plasma TPO activity than normal mice, there was no increase in TPO mRNA levels as measured by an S1 nuclease protection assay. After the intravenous injection of 125I-TPO, specific uptake of radioactivity by the spleen and blood cells was present in the normal mice, but absent in the c-mpl- /- mice. Platelet-rich plasma (PRP) from normal mice was able to bind and internalize 125I-TPO, whereas PRP from c-mpl-/- mice lacked this ability. Analysis of 125I-TPO binding to normal PRP indicated that binding was specific and saturable, with an approximate affinity of 560 pmol/L and 220 receptors per platelet. PRP from normal mice was also able to degrade 125I-TPO into lower molecular weight fragments. After the intravenous injections, c-mpl-/- mice cleared a dose of 125I-TPO at a much slower rate than did normal mice. Injection of washed platelets from normal mice into c-mpl-/- mice resulted in a dramatic, but transient, decrease in plasma TPO levels. These data provide evidence that platelets regulate plasma TPO levels via binding to the c-mpl receptor on circulating platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.