Object trackers based on Convolution Neural Network (CNN) have achieved state-of-the-art performance on recent tracking benchmarks, while they suffer from slow computational speed. The high computational load arises from the extraction of the feature maps of the candidate and training patches in every video frame. The candidate and training patches are typically placed randomly around the previous target location and the estimated target location respectively. In this paper, we propose novel schemes to speedup the processing of the CNN-based trackers. We input the whole region-of-interest once to the CNN to eliminate the redundant computations of the random candidate patches. In addition to classifying each candidate patch as an object or background, we adapt the CNN to classify the target location inside the object patches as a coarse localization step, and we employ bilinear interpolation for the CNN feature maps as a fine localization step. Moreover, bilinear interpolation is exploited to generate CNN feature maps of the training patches without actually forwarding the training patches through the network which achieves a significant reduction of the required computations. Our tracker does not rely on offline video training. It achieves competitive performance results on the OTB benchmark with 8x speed improvements compared to the equivalent tracker.
Convolution Neural Network (CNN) has achieved a performance boost to the visual tracking field. However, CNN-based trackers feature slow computational speed and large memory size. These issues challenge the embedded implementation of the CNN-based trackers. In this paper, we show how interpolation schemes can significantly reduce the memory requirements. In addition, we present a design-space exploration of the fixed-point representation of the CNN-based trackers aiming for a cost-efficient hardware implementation. Moreover, we present a hardware accelerator of the online training stage of the tracker. Our proposed accelerator can train the whole fully connected layers at a rate of 45.9 frames-per-second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.