We propose a new reduced-order model for spherical bubble dynamics that accurately captures the effects of heat and mass diffusion. The objective is to reduce the full system of partial differential equations to a set of coupled ordinary differential equations that are efficient enough to implement into complex bubbly flow computations. Comparisons to computations of the full partial differential equations and of other reduced-order models are used to validate the model and establish its range of validity.
The effects of unsteady bubble dynamics on cavitating flow through a converging-diverging nozzle are investigated numerically. A continuum model that couples the Rayleigh-Plesset equation with the continuity and momentum equations is used to formulate unsteady, quasi-one-dimensional partial differential equations. Flow regimes studied include those where steady-state solutions exist, and those where steady-state solutions diverge at the so-called flashing instability. These latter flows consist of unsteady bubbly shock waves traveling downstream in the diverging section of the nozzle. An approximate analytical expression is developed to predict the critical backpressure for choked flow. The results agree with previous barotropic models for those flows where bubble dynamics are not important, but show that in many instances the neglect of bubble dynamics cannot be justified. Finally the computations show reasonable agreement with an experiment that measures the spatial variation of pressure, velocity and void fraction for steady shockfree flows, and good agreement with an experiment that measures the throat pressure and shock position for flows with bubbly shocks. In the model, damping of the bubble radial motion is restricted to a simple ''effective'' viscosity, but many features of the flow are shown to be independent of the specific damping mechanism.
The Rayleigh-Plesset equation has been used extensively to model spherical bubble dynamics, yet it has been shown that it cannot correctly capture damping effects due to mass and thermal diffusion. Radial diffusion equations may be solved for a single bubble, but these are too computationally expensive to implement into a continuum model for bubbly cavitating flows since the diffusion equations must be solved at each position in the flow. The goal of the present research is to derive reduced-order models that account for thermal and mass diffusion. We present a model that can capture the damping effects of the diffusion processes in two ODE’s, and gives better results than previous models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.