The state of Jordan’s energy independence is critical, with the country relying almost entirely on imported oil and gas. Consequently, energy availability is considered to be the most significant challenge faced by Jordan’s industrial sectors. Between 2014–2019, the Jordan generated over 12,000 kilo-tons of waste and residue each year. The available quantities of agricultural residues and animal wastes produced in Jordan were approximately 1284.2 kilo-tons/year and 10,909.6 kilotons/year, respectively, of which an estimated 42% could be used as a source of biogas. Two options for utilizing biomass resources have been reviewed in this paper: thermal treatment (direct combustion) and as a source of biogas. The quantity of biogas that can be produced in Jordan from a variety of biomass feedstocks is estimated to be 816.2 million cubic meters (MCM), which is equivalent to a yearly power output of 960.9 GWh, representing approximately 5.1% of the total electricity consumed by Jordan in 2019 (18,853 GWh). Assuming a thermal efficiency of 70%, biogas can generate as much as 4.8 TWh of heat energy. Alternatively, the direct combustion of various biomasses can provide Jordan with 2316.7 GWh of electricity. These findings may lead to the development of a long-term strategic plan for the intelligent utilization of available biomass feedstocks for electrical generation and/or as a source of biogas. This would consequently raise the proportion of sustainable energy derived from biomass in Jordan’s energy mix. This work aims to assess the technical, economic, and environmental aspects associated with incorporating biomass resources into Jordan’s energy network.
Jordan’s energy situation is in a critical state of dependency, with the country relying heavily on imports to satisfy its ever-increasing energy requirements. Renewable energy is a more competitive and consistent source of energy that can supply a large proportion of a country’s energy demand. It is environmentally friendly and minimizes atmospheric pollutant emissions. Thus, bioenergy has the potential to be a crucial alternative energy source in Jordan. Biomass is the principal source of bioenergy; it accounts for approximately 13% of the primary energy demand and is anticipated to supply half of the total primary energy demand by 2050. Nanotechnology has emerged as an important scientific research area with numerous applications, including biofuels. This review summarizes the application of nanoparticles to improve the properties and processes of biofuels. It presents the availability and viability of nanotechnology-supported bioenergy production in Jordan. Jordan generates up to 5.8 million tons of biomass each year and has access to abundant nonedible plant resources (such as Jojoba, Handal, and Jatropha). The theoretical energy potential of waste and residue available in Jordan was also assessed; it was discovered that the 1.28 million tons of dry crop residues (vegetables, fruits, and farming crops) could generate 6.8 PJ of energy per year and that biogas could be generated at a rate of 817 MCM/year
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.