C. elegans SIR-2.1, a member of the Sir-2 family of NAD(+)-dependent protein deacetylases, has been shown to regulate nematode aging via the insulin/IGF pathway transcription factor daf-16. Treatment of C. elegans with the small molecule resveratrol, however, extends life span in a manner fully dependent upon sir-2.1, but independent of daf-16. Microarray analysis of worms treated with resveratrol demonstrates the transcriptional induction of a family of genes encoding prion-like glutamine/asparagine-rich proteins involved in endoplasmic reticulum (ER) stress response to unfolded proteins. RNA interference of abu-11, a member of this ER stress gene family, abolishes resveratrol-mediated life span extension, and overexpression of abu-11 extends the life span of transgenic animals. Furthermore, SIR-2.1 normally represses transcription of abu-11 and other ER stress gene family members, indicating that resveratrol extends life span by inhibiting sir-2.1-mediated repression of ER stress genes. Our findings demonstrate that abu-11 and other members of its ER stress gene family are positive determinants of C. elegans life span.
The longevity of Caenorhabditis elegans is promoted by extra copies of the sir-2.1 gene in a manner dependent on the forkhead transcription factor DAF-16. We identify two C. elegans 14-3-3 proteins as SIR-2.1 binding partners and show that 14-3-3 genes are required for the life-span extension conferred by extra copies of sir-2.1. 14-3-3 proteins are also required for SIR-2.1-induced transcriptional activation of DAF-16 and stress resistance. Following heat stress, SIR-2.1 can bind DAF-16 in a 14-3-3-dependent manner. By contrast, low insulin-like signaling does not promote SIR-2.1/DAF-16 interaction, and sir-2.1 and the 14-3-3 genes are not required for the regulation of life span by the insulin-like signaling pathway. We propose the existence of a stress-dependent pathway in which SIR-2.1 and 14-3-3 act in parallel to the insulin-like pathway to activate DAF-16 and extend life span.
Tolerance mechanisms are important in the ability of cells to cope with DNA damage. In E. coli, the two main damage tolerance mechanisms are recombinational repair (RR) and translesion replication (TLR). Here we show that RR effectively repairs gaps opposite DNA lesions. When both mechanisms are functional, RR predominates over TLR, being responsible for 86% of the repair events. This predominance of RR is determined by the high concentration of RecA present under SOS conditions, which causes a differential inhibition of TLR. Further inhibition of TLR is caused by the RecA-catalyzed strand exchange reaction of RR. This molecular hierarchy in the tolerance of DNA lesions ensures that the nonmutagenic RR predominates over the mutagenic TLR, thereby contributing to genetic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.