The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.
Recently, phishing attacks have become one of the most prominent social engineering attacks faced by public internet users, governments, and businesses. In response to this threat, this paper proposes to give a complete vision to what Machine learning is, what phishers are using to trick gullible users with different types of phishing attacks techniques and based on our survey that phishing emails is the most effective on the targeted sectors and users which we are going to compare as well. Therefore, more effective phishing detection technology is needed to curb the threat of phishing emails that are growing at an alarming rate in recent years, thus will discuss the techniques of mitigation of phishing by Machine learning algorithms and technical solutions that have been proposed to mitigate the problem of phishing and valuable awareness knowledge users should be aware to detect and prevent from being duped by phishing scams. In this work, we proposed a detection model using machine learning techniques by splitting the dataset to train the detection model and validating the results using the test data , to capture inherent characteristics of the email text, and other features to be classified as phishing or non-phishing using three different data sets, After making a comparison between them, we obtained that the most number of features used the most accurate and efficient results achieved. the best ML algorithm accuracy were 0.88, 1.00, and 0.97 consecutively for boosted decision tree on the applied data sets.
Chest and lung diseases are among the most serious chronic diseases in the world, and they occur as a result of factors such as smoking, air pollution, or bacterial infection, which would expose the respiratory system and chest to serious disorders. Chest diseases lead to a natural weakness in the respiratory system, which requires the patient to take care and attention to alleviate this problem. Countries are interested in encouraging medical research and monitoring the spread of communicable diseases. Therefore, they advised researchers to perform studies to curb the diseases’ spread and urged researchers to devise methods for swiftly and readily detecting and distinguishing lung diseases. In this paper, we propose a hybrid architecture of contrast-limited adaptive histogram equalization (CLAHE) and deep convolutional network for the classification of lung diseases. We used X-ray images to create a convolutional neural network (CNN) for early identification and categorization of lung diseases. Initially, the proposed method implemented the support vector machine to classify the images with and without using CLAHE equalizer. The obtained results were compared with the CNN networks. Later, two different experiments were implemented with hybrid architecture of deep CNN networks and CLAHE as a preprocessing for image enhancement. The experimental results indicate that the suggested hybrid architecture outperforms traditional methods by roughly 20% in terms of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.