Objectives: Identification of patients with coronavirus disease 2019 (COVID-19) at risk for deterioration after discharge from the emergency department (ED) remains a clinical challenge. Our objective was to develop a prediction model that identifies patients with COVID-19 at risk for return and hospital admission within 30 days of ED discharge.
Methods:We performed a retrospective cohort study of discharged adult ED patients (n = 7529) with SARS-CoV-2 infection from 116 unique hospitals contributing to the National Registry of Suspected COVID-19 in Emergency Care. The primary outcome was return hospital admission within 30 days. Models were developed using classification and regression tree (CART), gradient boosted machine (GBM), random forest (RF), and least absolute shrinkage and selection (LASSO) approaches.Results: Among patients with COVID-19 discharged from the ED on their index encounter, 571 (7.6%) returned for hospital admission within 30 days. The machinelearning (ML) models (GBM, RF, and LASSO) performed similarly. The RF model yielded
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.