Industrial robots have long been used in production systems in order to improve productivity, quality and safety in automated manufacturing processes. An unforeseen robot stoppage due to different reasons has the potential to cause an interruption in the entire production line, resulting in economic and production losses. The majority of the previous research on industrial robots health monitoring is focused on monitoring of a limited number of faults, such as backlash in gears, but does not diagnose the other gear and bearing faults. Thus, the main aim of this research is to develop an intelligent condition monitoring system to diagnose the most common faults that could be progressed in the bearings of industrial robot joints, such as inner/outer race bearing faults, using vibration signal analysis. For accurate fault diagnosis, time-frequency signal analysis based on the discrete wavelet transform (DWT) is adopted to extract the most salient features related to faults, and the artificial neural network (ANN) is used for faults classification. A data acquisition system based on National Instruments (NI) software and hardware was developed for robot vibration analysis and feature extraction. An experimental investigation was accomplished using the PUMA 560 robot. Firstly, vibration signals are captured from the robot when it is moving one joint cyclically. Then, by utilising the wavelet transform, signals are decomposed into multi-band frequency levels starting from higher to lower frequencies. For each of these levels the standard deviation feature is computed and used to design, train and test the proposed neural network. The developed system has showed high reliability in diagnosing several seeded faults in the robot. _____________________ Alaa Abdulhady Jaber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Machine healthy monitoring is a type of maintenance inspection technique by which an operational asset is monitored and the data obtained is analysed to detect signs of degradation, diagnose the causes of faults and thus reducing the maintenance costs. Vibration signals analysis was extensively used for machines fault detection and diagnosis in various industrial applications, as it respond immediately to manifest itself if any change is appeared in the monitored machine. However, recent developments in electronics and computing have opened new horizons in the area of condition monitoring and have shown their practicality in fault detection and diagnosis processes. The main aim of using wireless embedded systems is to allow data analysis to be carried out locally at field level and transmitting the results wirelessly to the base station, which as a result will help to overcome the need for wiring and provides an easy and cost-effective sensing technique to detect faults in machines. So, the main focuses of this research is to design and develop an online condition monitoring system based on wireless embedded technology that can be used to detect and diagnose the most common faults in the transmission systems (gears and bearings) of an industrial robot joints using vibration signal analysis.
In this research an internet of things (IoT) system is designed for the purpose of industrial environment monitoring and control. The system is mainly composed of control and sensor units. Control unit has the responsibility of managing the received data form the sensor unit and then executing the developed control algorithm based on the measured parameters. NodeMCU development kit is used as the core of the control unit. The senor unit contains gas and temperature sensors utilized for measuring the temperature and concentration of toxic gases in the monitored space. A buzzer has also been embedded in the sensor unit for alerting the occupants acoustically in the danger situations. If the monitored temperature gets higher or lower than the set levels, the air conditioning system will be automatically operated. Similarly, the fan (ventilation) system will be operated if the level of toxic gases becomes high. A mobile application, based on Blynk platform, is then developed to enable the wireless monitoring and control of the environment by the in charge people. In addition to the automatic and wireless control the manual control capability is considered in the developed IoT system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.