Nε-lysine acetylation is an abundant posttranslational modification of thousands of proteins involved in diverse cellular processes. In the model bacterium Escherichia coli, the ε-amino group of a lysine residue can be acetylated either catalytically by acetyl-coenzyme A (acCoA) and lysine acetyltransferases, or nonenzymatically by acetyl phosphate (acP). It is well known that catalytic acCoA-dependent Nε-lysine acetylation can be reversed by deacetylases. Here, we provide genetic, mass spectrometric, structural and immunological evidence that CobB, a deacetylase of the sirtuin family of NAD+-dependent deacetylases, can reverse acetylation regardless of acetyl donor or acetylation mechanism. We analyzed 69 lysines on 51 proteins that we had previously detected as robustly, reproducibly, and significantly more acetylated in a cobB mutant than in its wild-type parent. Functional and pathway enrichment analyses supported the hypothesis that CobB regulates protein function in diverse and often essential cellular processes, most notably translation. Combined mass spectrometry, bioinformatics, and protein structural data provided evidence that the accessibility and three-dimensional microenvironment of the target acetyllysine help determine CobB specificity. Finally, we provide evidence that CobB is the predominate deacetylase in E. coli.
BackgroundAntibiotic use is largely under-regulated in Egypt leading to the emergence of resistant isolates. Carbapenems are last resort agents to treat Acinetobacter baumannii infections resistant to other classes of antibiotics. However, carbapenem-resistant isolates are emerging at an alarming rate. This study aimed at phenotypically and molecularly characterizing seventy four carbapenem-unsusceptible A. baumannii isolates from Egypt to detect the different enzymes responsible for carbapenem resistance.MethodsCarbapenemase production was assessed by a number of phenotypic methods: modified Hodge test (MHT), carbapenem inactivation method (CIM), combined disc test (CDT), CarbAcineto NP test and boronic acid disc test. Polymerase chain reaction (PCR) was used to screen the isolates for the presence of some genes responsible for resistance to carbapenems, as well as some insertion sequences.ResultsPCR amplification of class D carbapenemases revealed the prevalence of blaOXA-51 and blaOXA-23 in 100% of the isolates and of blaOXA-58 in only one isolate (1.4%). blaVIM and blaNDM-1 belonging to class B metallo-β-lactamases were present in 100 and 12.1% of the isolates, respectively. The prevalence of ISAba1, ISAba2 and ISAba3 was 100, 2.7 and 4.1%, respectively. None of the tested isolates carried blaOXA-40, blaIMP, blaSIM, blaSPM, blaGIM or the class A blaKPC. Taking PCR as the gold standard method for the detection of different carbapenemases, the sensitivities of the MHT, CIM, CDT, CarbAcineto NP test and boronic acid disc/imipenem or meropenem test for this particular collection of isolates were 78.4, 68.9, 79.7, 95.9, and 56.8% or 70.3%, respectively.ConclusionsThe widespread detection of carbapenem-resistant A. baumannii (CR-AB) has become a real threat to the efficacy of treatment regimens. Among the studied cohort of CR-AB clinical isolates, blaOXA-51, blaOXA-23 and blaVIM were the most prevalent, followed by blaNDM-1 and blaOXA-58. The genotypic detection of carbapenemases among CR-AB clinical isolates using PCR was most conclusive, followed closely by the phenotypic testing using CarbAcineto NP test.
Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75%) was the most common CoNS species identified. Nine isolates (7%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39%), erythromycin (33%) and fusidic acid (24%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23% (29/127) of the isolates, with 33% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.