This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal–Wallis test.
Principal component Analysis (PCA) is one of the popular methods used to solve the multicollinearity problem. Researchers in 2014 proposed an estimator to solve this problem in the linear model when there were stochastic linear restrictions on the regression coefficients. This estimator was called the stochastic restricted principal components (SRPC) regression estimator. The estimator was constructed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) estimator. It ignores the number of components (orthogonal matrix T r) that the researchers choose to solve the multicollinearity problem in the data matrix (X). This paper proposed four different methods (Lagrange function, the same technique, the constrained principal component model, and substitute in model) to modify the (SRPC) estimator to be used in case of multicollinearity. Finally, a numerical example, an application, and simulation study have been introduced to illustrate the performance of the proposed estimator.
Linear model (LM) provide the advance in regression analysis, where it was considered an important statistical development of the last fifty years, following general linear model (GLM), principal component analysis (PCA) and constrained principal component analysis (CPCA) in the last thirty years. This paper introduce a series of papers prepared within the framework of an international workshop. Firstly, the LM and GLM has been discussed. Next, an overview of PCA has been presented. Then constrained principal component has been shown. Some of its special cases such as PCA, Canonical correlation analysis (CANO), Redundancy analysis (RA), Correspondence analysis (CA), Growth curve models (GCM), Extended growth curve models (ExGCM), Canonical discriminant analysis (CDA), Constrained correspondence analysis, non-symmetric correspondence analysis, Multiple Set CANO, Multiple Correspondence Analysis, Vector Preference Models, Seemingly unrelated regression (SUR), Weighted low rank approximations, Two-Way canonical decomposition with linear constraints, and Multilevel RA has been noted in this paper. Related methods and ordinary least squares (OLS) estimator as a special case form CPCA has been introduced. Finally, an example has been introduced to indicate the importance of CPCA and the different between PCA and CPCA. Where CPCA is a method for structural analysis of multivariate data that combine features of regression analysis and principal component analysis. In this method, the original data first decomposed into several components according to external information. The components then subjected to principal component analysis to explore structures within the components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.