Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (−S) responses in plants, the physiological function of this metabolic process is not clear. Two β-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by −S. To clarify the physiological function of BGLU28 and BGLU30 and their roles in GSL catabolism, we analyzed the accumulation of GSLs and other S-containing compounds in the single and double mutant lines of BGLU28 and BGLU30 and in wild-type plants under different S conditions. GSL levels were highly increased, while the levels of sulfate, cysteine, glutathione and protein were decreased in the double mutant line of BGLU28 and BGLU30 (bglu28/30) under −S. Furthermore, transcript level of Sulfate Transporter1;2, the main contributor of sulfate uptake from the environment, was increased in bglu28/30 mutants under −S. With these metabolic and transcriptional changes, bglu28/30 mutants displayed obvious growth retardation under −S. Overall, our results indicate that BGLU28 and BGLU30 are required for −S-induced GSL catabolism and contribute to sustained plant growth under −S by recycling sulfate to primary S metabolism.
Recent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability. We investigated the effects of S availability on Pi uptake, transport, and accumulation in Arabidopsis thaliana grown under sulfur sufficiency (+S) and deficiency (−S). Total P in shoots was significantly increased under −S owing to higher Pi accumulation. This accumulation was facilitated by increased Pi uptake under −S. In addition, −S increased root-to-shoot Pi transport, which was indicated by the increased Pi levels in xylem sap under −S. The −S-increased Pi level in the xylem sap was diminished in the disruption lines of PHT1;9 and PHO1, which are involved in root-to-shoot Pi transport. Our findings indicate a new aspect of the interaction between S and P by listing the increased Pi accumulation as part of −S responses and by highlighting the effects of −S on Pi uptake, transport, and homeostasis.
Plants are considered to absorb sulfur from their roots in the form of sulfate. In bacteria like Escherichia coli, thiosulfate is a preferred sulfur source. It is converted into cysteine (Cys). This transformation consumes less NADPH and ATP than sulfate assimilation into Cys. In Saccharomyces cerevisiae, thiosulfate promoted growth more than sulfate. In the present study, the availability of thiosulfate, the metabolite transformations and gene expressions it induces were investigated in Arabidopsis and rice as model dicots and monocots, respectively. In Arabidopsis, the thiosulfate-amended plants had lower biomass than those receiving sulfate when sulfur concentrations in the hydroponic medium were above 300 μM. In contrast, rice biomass was similar for plants raised on thiosulfate and sulfate at 300 μM sulfur. Therefore, both plants can use thiosulfate but it is a better sulfur source for rice. In both plants, thiosulfate levels significantly increased in roots following thiosulfate application, indicating that the plants absorbed thiosulfate into their root cells. Thiosulfate is metabolized in plants by a different pathway from that used for sulfate metabolism. Thiosulfate increases plant sulfide and cysteine persulfide levels which means that plants are in a more reduced state with thiosulfate than with sulfate. The microarray analysis of Arabidopsis roots revealed that 13 genes encoding Cys-rich proteins were upregulated more with thiosulfate than with sulfate. These results together with those of the widely targeted metabolomics analysis were used to proposes a thiosulfate assimilation pathway in plants.
Plants take up sulfur (S), an essential element for all organisms, as sulfate, which is mainly attributed to the function of SULTR1;2 in Arabidopsis. A disruption mutant of SULTR1;2, sel1-10, has been characterized with phenotypes similar to plants grown under sulfur deficiency (−S). Although the effects of −S on S metabolism were well investigated in seedlings, no studies have been performed on mature Arabidopsis plants. To study further the effects of −S on S metabolism, we analyzed the accumulation and distribution of S-containing compounds in different parts of mature sel1-10 and of the wild-type (WT) plants grown under long-day conditions. While the levels of sulfate, cysteine, and glutathione were almost similar between sel1-10 and WT, levels of glucosinolates (GSLs) differed between them depending on the parts of the plant. GSLs levels in the leaves and stems were generally lower in sel1-10 than those in WT. However, sel1-10 seeds maintained similar levels of aliphatic GSLs to those in WT plants. GSL accumulation in reproductive tissues is likely to be prioritized even when sulfate supply is limited in sel1-10 for its role in S storage and plant defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.