In recent years, the advent of cloud computing has transformed the field of computing and information technology. It has been enabling customers to rent virtual resources and take advantage of various on-demand services with the lowest costs. Despite the advantages of cloud computing, it faces several threats; an example is a distributed denial of service (DDoS) attack, which is considered among the most serious. This article presents real-time monitoring and detection of DDoS attacks on the cloud using a machine learning approach. Naïve Bayes, K-nearest neighbor, decision tree, and random forest machine learning classifiers have been selected to build a predictive model named “Real-Time DDoS flood Attack Monitoring and Detection RT-AMD.” The DDoS-2020 dataset was constructed with 70,020 records to evaluate RT-AMD’s accuracy. The DDoS-2020 contains three protocols for network/transport-level, which are TCP, DNS, and ICMP. This article evaluates the proposed model by comparing its accuracy with related works. Our model has shown improvement in the results and reached real-time attack detection using incremental learning. The model achieved 99.38% accuracy for the random forest in real-time on the cloud environment and 99.39% on local testing. The RT-AMD was evaluated on the NSL-KDD dataset as well, in which it achieved 99.30% accuracy in real-time in a cloud environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.