Wind is a promising source of renewable energy which can be harvested using wind turbines placed on farms. An efficient wind farm layout achieving various engineering and financial objectives is crucial to ensure the sustainability and continuity of energy production. In this study, a high-level search technique, namely late acceptance selection hyper-heuristic is applied to optimise the layout of wind farms. This approach aims to find the best placement of turbines at a given site, maximising the energy output while minimising the cost at the same time. The computational experiments indicate that the late acceptance selection hyper-heuristic improves upon the performance of a previously proposed genetic algorithm across all scenarios and an iterated local search over the majority of scenarios considering the best solutions obtained by each algorithm over the runs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.