In this paper we estimate from above the area of the graph of a singular map u taking a disk to three vectors, the vertices of a triangle, and jumping along three C 2 − embedded curves that meet transversely at only one point of the disk. We show that the relaxed area can be estimated from above by the solution of a Plateau-type problem involving three entangled nonparametric areaminimizing surfaces. The idea is to "fill the hole" in the graph of the singular map with a sequence of approximating smooth two-codimensional surfaces of graph-type, by imagining three minimal surfaces, placed vertically over the jump of u, coupled together via a triple point in the target triangle. Such a construction depends on the choice of a target triple point, and on a connection passing through it, which dictate the boundary condition for the three minimal surfaces. We show that the singular part of the relaxed area of u cannot be larger than what we obtain by minimizing over all possible target triple points and all corresponding connections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.