Silver nanoparticles (AgNPs) are widely used in many consumer products due to their anti-inflammatory properties. Therefore, the effect of exposure to AgNPs should be investigated in diseased states in addition to healthy ones. Tumor necrosis factor-α (TNFα) is a major cytokine that is highly expressed in many diseased conditions, such as inflammatory diseases, sepsis, and cancer. We investigated the effects of two different sizes of AgNPs on the TNFα-induced DNA damage response. Cells were exposed to 10 and 200 nm AgNPs separately and the results showed that the 200 nm AgNPs had a lower cytotoxic effect with a higher percent of cellular uptake compared to the 10 nm AgNPs. Moreover, analysis of reactive oxygen species (ROS) generation and DNA damage indicated that TNFα-induced ROS-mediated DNA damage was reduced by 200 nm AgNPs, but not by 10 nm AgNPs. Tumor necrosis factor receptor 1 (TNFR1) was localized on the cell surface after TNFα exposure with or without 10 nm AgNPs. In contrast, the expression of TNFR1 on the cell surface was reduced by the 200 nm AgNPs. These results suggested that exposure of cells to 200 nm AgNPs reduces the TNFα-induced DNA damage response via reducing the surface expression of TNFR1, thus reducing the signal transduction of TNFα.
Silver nanoparticles (AgNPs) are widely known to have anti-inflammatory properties, but the exact mechanism underlying this anti-inflammatory effect is not clearly understood. Tumor necrosis factor-α (TNFα) is a major pro-inflammatory cytokine that is expressed in the early stage of cell inflammation and induces apoptosis by several known pathways. Our study aimed to investigate the effect of AgNPs on the response of lung epithelial cells to TNFα and the molecular mechanism of this response. Lung epithelial cell line NCI-H292 cells were exposed to AgNPs (5 µg/mL) and/or TNFα (20 ng/mL) for 24 h, then cellular uptake was analyzed using flow cytometry. Our results showed that AgNPs were taken up by cells in a dose-dependent manner and that the cellular uptake ratio of AgNPs was significantly increased in the presence of TNFα. Apoptosis assays indicated that exposure to AgNPs significantly decreased the apoptotic effect of TNFα. Confocal microscopy was used to localize the tumor necrosis factor receptor 1 (TNFR1) and revealed that TNFR1 localized on the surface of cells exposed to TNFα. In contrast, TNFR1 localized inside cells exposed to both AgNPs and TNFα, with very few receptors scattered on the cell membrane. The results indicated that AgNPs reduced the cell surface TNFR1 expression level. The results suggested that the reduction of surface TNFR1 reduced cellular response to TNFα, resulting in an anti-apoptotic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.