Background: The Single-wall Carbon Nanotubes (SWCNTs) represent one of
the most active classes of nanostructures, and they have been widely used as active materials
for important applications. In this study, the electronic, thermochemistry and vibrational
properties of zigzag and armchair SWCNTs were investigated.
Objective: Using these investigations, it is possible to obtain much more data to apply
SWCNTs in medical science, industrial technologies and nanosensors applications.
Methods: All the calculations are based on the Density Functional Theory (DFT) at the
B3LYP/6-31G level through the Gaussian 09W program package.
Results: The optimized structures, diameter, contour plots for electronic states (HOMO
and LUMO), energy gaps, thermochemistry functions and vibrational intensities were
performed and discussed.
Conclusion: This study clarified the properties of SWCNTs are dependent on the diameter
of the tube, i.e. the chrial vector (n, m). An addition, these results could help to design
more efficient functional SWCNTs, and these properties play a key role for many
applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.