Background. This study was undertaken to evaluate the impact of prognostic factors on the locoregional failure-free survival of early breast cancer patients. Methods. In this single-institutional study, 213 breast cancer patients were retrospectively analysed. Fifty-five of 213 patients were ≤40 years of age at diagnosis. The impact of patient- or treatment-related factors on the locoregional failure-free survival was assessed using the Kaplan-Meier method. The simultaneous impact of factors on the locoregional failure-free survival was assessed using the Cox proportional hazards regression analysis. Results. The median follow-up time of the censored patients was 22 months (mean 28 months, range 3–92 months). On univariate analysis, statistically significant factors for the locoregional failure-free survival were the age (≤40 versus >40 years), T stage (Tis, T0–2 versus T3-4), molecular tumor type (luminal A versus luminal B, Her2neu overexpression, or triple negative), and lymphovascular status (LV0 versus LV1). On multivariate analysis, age and T stage remained statistically significant. Conclusions. Being 40 years or younger has a statistically significant independent adverse impact on the locoregional failure-free survival of patients with early breast cancer.
BackgroundThe objective of this study was to identify breast cancer patients with a high risk of developing brain metastases who may benefit from pre-emptive medical intervention.MethodsMedical records of 352 breast cancer patients with local or locoregional disease at diagnosis were retrospectively analysed. The brain metastasis-free survival was estimated using the Kaplan-Meier method and patient groups were compared using the log rank test. The simultaneous relationship of multiple prognostic factors was assessed using Cox’s proportional hazard regression analysis. The Fisher exact test was used to test the difference of proportions for statistical significance.ResultsOn univariate analysis, statistically highly significant unfavourable risk factors for the brain metastasis-free survival were negative ER status, negative PR status, and triple negative tumor subtype. Young age at diagnosis (≤35 years) and advanced disease stage were not statistically significant (p = 0.10). On multivariate analysis, the only independent significant factor was the ER status (negative ER status; hazard radio (95% confidence interval), 5.1 (1.8-14.6); p = 0.003). In the subgroup of 168 patients with a minimum follow-up of 24 months, 49 patients developed extracranial metastases as first metastatic event. Of those, 7 of 15 (46.6%) with a negative ER status developed brain metastases compared to 5 of 34 (14.7%) with a positive ER status (Fisher exact test, p = 0.03). The median time interval (minimum-maximum) between the diagnosis of extracranial and brain metastases was 7.5 months (1-30 months).ConclusionsBreast cancer patients with extracranial metastasis and negative ER status exhibited an almost 50% risk of developing brain metastasis during their course of disease. Future studies are highly desired to evaluate the efficacy of pre-emptive medical intervention such as prophylactic treatment or diagnostic screening for high risk breast cancer patients.
BackgroundThe aim of the study was to identify factors significantly associated with the occurrence of unintended treatment interruptions in adjuvant breast cancer radiotherapy.Patients and methodsPatients treated with postoperative radiotherapy of the breast or chest wall between March 2014 and August 2016 were evaluated. The radiotherapy regimens and techniques applied were either conventional fractionation (CF; 28 daily fractions of 1.8 Gy or 25 fractions of 2.0 Gy) or hypofractionation (HF; 15 daily fractions of 2.67 Gy) with inverse planned intensity-modulated radiotherapy (IMRT) or three-dimensional planned conformal radiotherapy (3DCRT). Logistic regression analysis was used to identify factors associated with noncompliance. Noncompliance was defined as the missing of at least one scheduled radiotherapy fraction.ResultsIn all, 19 of 140 (13.6%) patients treated with HF and 39 of 146 (26.7%) treated with CF experienced treatment interruptions. Of 23 factors tested, the fractionation regimen emerged as the only independent significant prognostic factor for noncompliance on multivariate analysis (CF; p = 0.007; odds ratio, 2.3; 95% confidence interval, 1.3–4.2). No statistically significant differences concerning the reasons for treatment interruptions could be detected between patients treated with CF or HF.ConclusionHF is significantly associated with a better patient compliance with the prescribed radiotherapy schedule compared with CF. The data suggest that this finding is basically related to the shorter overall treatment time of HF.
PurposeThe aim of the study was to estimate interfractional deviations in patient and prostate position, the impact of the frequency of online verification on the treatment margins, and to assess acute radiation reactions of high-dose external beam image-guided intensity-modulated radiotherapy (IG-IMRT) of localized prostate cancer.Patients and methodsIG-IMRT was performed by daily online verification of implanted fiducial prostate markers using a megavoltage electronic portal imaging device (EPID). A total of 1011 image-guided treatment fractions from 23 consecutive unselected prostate cancer patients were analyzed. The median total dose was 79.2 Gy (range 77.4–81.0 Gy). Acute radiation reactions were assessed weekly during radiotherapy using the Common Terminology Criteria for Adverse Events (CTCAE) v.4.03.ResultsA relevant combined patient set-up and prostate motion population random error of 4–5 mm was observed. Compared to daily IGRT, image guidance every other day required an expansion of the CTV–PTV (clinical target volume–planning target volume) margin of 8.1, 6.6, and 4.1 mm in the longitudinal, vertical, and lateral directions, thereby, increasing the PTV by approximately 30–40 %. No grade 3 or 4 acute radiation reactions were observed with daily IG-IMRT.ConclusionA high dose with surprisingly low acute toxicity can be applied with daily IG-IMRT using implanted fiducial prostate markers. Daily image guidance is clearly superior to image guidance every other fraction concerning adequate target coverage with minimal margins.
BackgroundThe purpose of the study was to evaluate the impact of multiple prognostic factors on the acute skin reaction in adjuvant breast cancer radiotherapy, in particular the impact of hypofractionation (HF) compared to conventional fractionation (CF) and tangential beam (TB) IMRT compared to three-dimensional conformal radiotherapy (3DCRT).MethodsTwo-hundred and sixty-six breast cancer patients with postoperative radiotherapy after breast conserving surgery or mastectomy were retrospectively evaluated. Patients were treated with HF (15 fractions of 2.67 Gy; n = 121) or CF (28 fractions of 1.8 Gy or 25 fractions of 2.0 Gy; n = 145) and TB-IMRT (n = 151) or 3DCRT (n = 115). The acute skin reactions were prospectively assessed using the CTCAE v4 grading scale. Ordinal regression analysis was used to assess the impact of possible prognostic factors on the maximal acute skin reaction.ResultsGrade 2 skin reactions were observed in 19 % of the patients treated with CF compared to 2 % treated with HF. On univariate analysis, the fractionation regimen, the PTV (breast versus chest wall), the volume of the PTV and the body mass index were significant prognostic factors for the maximum acute skin reaction. On multivariate analysis, the fractionation regimen (p < 0.00001) and the volume of the PTV (p = 0.0002) remained as independent significant factors.ConclusionsOur data suggest that HF is associated with a significantly reduced maximal acute skin reaction compared to CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.