Permanent WRAP URL:http://wrap.warwick.ac.uk86204 Copyright and reuse:The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.Publisher's statement: "© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." A note on versions:The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.For more information, please contact the WRAP Team at: wrap@warwick.ac.uk JOURNAL OF L A T E X CLASS FILES 1 Weighted Level Set Evolution Based on Local Edge Features for Medical Image SegmentationAlaa Khadidos, Victor Sanchez, Member, IEEE, and Chang-Tsun Li, Senior Member, IEEE Abstract-Level set methods have been widely used to implement active contours for image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may hinder the accuracy of any segmentation method based on active contours implemented using level set methods. This paper proposes a method based on active contours implemented using level set methods for segmentation of such medical images. The proposed method uses a level set evolution that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region located inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the image's gradient vector flow field and the evolving contour's normal. We evaluate the proposed method for segmentation of various regions in real MRI and CT slices, X-ray images, and ultra sound images. Evaluation results confirm the advantage of w...
Intrusion detection and classification have gained significant attention recently due to the increased utilization of networks. For this purpose, there are different types of Network Intrusion Detection System (NIDS) approaches developed in the conventional works, which mainly focus on identifying the intrusions from the datasets with the help of classification techniques. Still, it is limited by the significant problems of inefficiency in handling large dimensional datasets, high computational complexity, false detection, and more time consumption for training the models. To solve these problems, this research intends to develop an innovative clustering-based classification methodology to precisely detect intrusions from the different types of IDS datasets. Here, the most recent and extensively used IDS datasets such as NSL-KDD, CICIDS, and Bot-IoT have been employed for detecting intrusions. Data preprocessing has been performed to normalize the dataset to eliminate irrelevant attributes and organize the features. Then, the data separation is applied by forming the clusters by using an intelligent Anticipated Distance-based Clustering (ADC) incorporated with the Density-Based Spatial clustering of applications with noise (DBScan) algorithm. It helps to find the distance and density measures for grouping the attributes into the clusters, which increases the efficiency of classification. Here, the most suitable optimal parameters are selected using the Perpetual Pigeon Galvanized Optimization (PPGO) technique. The extracted features are used for training and testing the dataset samples.Consequently, the Likelihood Naïve Bayes (LNB) classification approach is implemented to accurately predict the classified label as to whether normal or attack. During the evaluation, the performance of the proposed IDS framework is validated and compared using various evaluation metrics. Theresults show that the proposed ADC-DBScan-LNB model outperforms the other techniques with improved performance outcomes. INDEX TERMSNetwork IntrusionDetection System (NIDS), Density-based spatial clustering of applications with noise (DBSCAN), Anticipated Distance-based Clustering (ADC), Data Preprocessing, Likelihood Naïve Bayes (LNB), and IDS Datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.