Stabilized base/subbase materials provide more structural support and durability to both flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized base/subbase layers in flexible pavements, good performance in terms of resilient modulus (Mr) under wet-dry cycle conditions is required. This study focuses on the development of a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (r2) compared with the other two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted Mr values generally yielded the same distribution and trend as the observed Mr data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.