Nowadays, coronavirus (COVID-19) is getting international attention due it considered as a life-threatened epidemic disease that hard to control the spread of infection around the world. Machine learning (ML) is one of intelligent technique that able to automatically predict the event with reasonable accuracy based on the experience and learning process. In the meantime, a rapid number of ML models have been proposed for predicate the cases of COVID-19. Thus, there is need for an evaluation and benchmarking of COVID-19 ML models which considered the main challenge of this study. Furthermore, there is no single study have addressed the problem of evaluation and benchmarking of COVID diagnosis models. However, this study proposed an intelligent methodology is to help the health organisations in the selection COVID-19 diagnosis system. The benchmarking and evaluation of diagnostic models for COVID-19 is not a trivial process. There are multiple criteria requires to evaluate and some of the criteria are conflicting with each other. Our study is formulated as a decision matrix (DM) that embedded mix of ten evaluation criteria and twelve diagnostic models for COVID-19. The multi-criteria decision-making (MCDM) method is employed to evaluate and benchmarking the different diagnostic models for COVID19 with respect to the evaluation criteria. An integrated MCDM method are proposed where TOPSIS applied for the benchmarking and ranking purpose while Entropy used to calculate the weights of criteria. The study results revealed that the benchmarking and selection problems associated with COVID19 diagnosis models can be effectively solved using the integration of Entropy and TOPSIS. The SVM (linear) classifier is selected as the best diagnosis model for COVID19 with the closeness coefficient value of 0.9899 for our case study data. Furthermore, the proposed methodology has solved the significant variance for each criterion in terms of ideal best and worst best value, beside issue when specific diagnosis models have same ideal best value. INDEX TERMS COVID19 diagnostic, machine learning, benchmarking methodology, chest X-rays images, entropy, TOPSIS, multi-criteria decision-making. The associate editor coordinating the review of this manuscript and approving it for publication was Zheng Xiao .
identification rate of 100% on all the employed databases and a recognition time less than one second per person.
The outbreaks of Coronavirus (COVID-19) epidemic have increased the pressure on healthcare and medical systems worldwide. The timely diagnosis of infected patients is a critical step to limit the spread of the COVID-19 epidemic. The chest radiography imaging has shown to be an effective screening technique in diagnosing the COVID-19 epidemic. To reduce the pressure on radiologists and control of the epidemic, fast and accurate a hybrid deep learning framework for diagnosing COVID-19 virus in chest X-ray images is developed and termed as the COVID-CheXNet system. First, the contrast of the X-ray image was enhanced and the noise level was reduced using the contrast-limited adaptive histogram equalization and Butterworth bandpass filter, respectively. This was followed by fusing the results obtained from two different pre-trained deep learning models based on the incorporation of a ResNet34 and high-resolution network model trained using a large-scale dataset. Herein, the parallel architecture was considered, which provides radiologists with a high degree of confidence to discriminate between the healthy and COVID-19 infected people. The proposed COVID-CheXNet system has managed to correctly and accurately diagnose the COVID-19 patients with a detection accuracy rate of 99.99%, sensitivity of 99.98%, specificity of 100%, precision of 100%, F1-score of 99.99%, MSE of 0.011%, and RMSE of 0.012% using the weighted sum rule at the score-level. The efficiency and usefulness of the proposed COVID-CheXNet system are established along with the possibility of using it in real clinical centers for fast diagnosis and treatment supplement, with less than 2 s per image to get the prediction result. Keywords Coronavirus COVID-19 epidemic Á Deep learning Á Transfer learning Á ResNet34 model Á Chest radiography imaging Á Chest X-ray images Communicated by Valentina E. Balas.
epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide. This newly recognized virus is highly transmissible, and no clinically approved vaccine or antiviral medicine is currently available. Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus. Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup. Here, a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray (CX-R) images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation. First, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images, respectively. Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused. Parallel architecture, which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people, was considered. The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%, sensitivity of 99.90%, specificity of 100%, precision of 100%, F1-score of 99.93%, MSE of 0.021%, and RMSE of 0.016% in a large-scale dataset. This system shows efficiency and accuracy and
The quick spread of the Coronavirus Disease (COVID-19) infection around the world considered a real danger for global health. The biological structure and symptoms of COVID-19 are similar to other viral chest maladies, which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease. In this study, an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods (e.g., artificial neural network (ANN), support vector machine (SVM), linear kernel and radial basis function (RBF), k-nearest neighbor (k-NN), Decision Tree (DT), and CN 2 rule inducer techniques) and deep learning models (e.g., MobileNets V2, ResNet50, GoogleNet, DarkNet and Xception). A large X-ray dataset has been created and developed, namely the COVID-19 vs. Normal (400 healthy cases, and 400 COVID cases). To the best of our knowledge, it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases. Based on the results obtained from the experiments, it can be concluded that all the models performed well, deep learning models had achieved the optimum accuracy of 98.8% in ResNet50 model. In comparison, in traditional machine learning techniques,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.