The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.
Inorganic conductometric gas sensors struggle to overcome limitations in high power consumption and poor selectivity. Herein, recent advances in developing self-powered gas sensors with tunable selectivity are introduced. Alternative general approaches for powering gas sensors were realized via proper integration of complementary functionalities (namely; powering and sensing) in a singular heterostructure. These solar light driven gas sensors operating at room temperature without applying any additional external powering sources are comparatively discussed. The TYPE-1 gas sensor based on integration of pure inorganic interfaces (e.g. CdS/n-ZnO/p-Si) is capable of delivering a self-sustained sensing response, while it shows a non-selective interaction towards oxidizing and reducing gases. The structural and the optical merits of TYPE-1 sensor are investigated giving more insights into the role of light activation on the modulation of the selfpowered sensing response. In the TYPE-2 sensor, the selectivity of inorganic materials is tailored through surface functionalization with self-assembled organic monolayers (SAMs). Such hybrid interfaces (e.g. SAMs/ZnO/p-Si) have specific surface interactions with target gases compared to the non-specific oxidation-reduction interactions governing the sensing mechanism of simple inorganic sensors. The theoretical modeling using density functional theory (DFT) has been used to simulate the sensing behavior of inorganic/organic/gas interfaces, revealing that the alignment of organic/gas frontier molecular orbitals with respect to the inorganic Fermi level is the key factor for tuning selectivity. These platforms open new avenues for developing advanced energy-neutral gas sensing devices and concepts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.