Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).
Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell-cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano-bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Gold, enigmatically represented by the target-like design of its ancient alchemical symbol, has been considered a mystical material of great value for centuries. Nanoscale particles of gold now command a great deal of attention for biomedical applications. Depending on their size, shape, degree of aggregation, and local environment, gold nanoparticles can appear red, blue, or other colors. These visible colors reflect the underlying coherent oscillations of conduction-band electrons ("plasmons") upon irradiation with light of appropriate wavelengths. These plasmons underlie the intense absorption and elastic scattering of light, which in turn forms the basis for many biological sensing and imaging applications of gold nanoparticles. The brilliant elastic light-scattering properties of gold nanoparticles are sufficient to detect individual nanoparticles in a visible light microscope with approximately 10(2) nm spatial resolution. Despite the great excitement about the potential uses of gold nanoparticles for medical diagnostics, as tracers, and for other biological applications, researchers are increasingly aware that potential nanoparticle toxicity must be investigated before any in vivo applications of gold nanoparticles can move forward. In this Account, we illustrate the importance of surface chemistry and cell type for interpretation of nanoparticle cytotoxicity studies. We also describe a relatively unusual live cell application with gold nanorods. The light-scattering properties of gold nanoparticles, as imaged in dark-field optical microscopy, can be used to infer their positions in a living cell construct. Using this positional information, we can quantitatively measure the deformational mechanical fields associated with living cells as they push and pull on their local environment. The local mechanical environment experienced by cells is part of a complex feedback loop that influences cell metabolism, gene expression, and migration.
Gold nanorods of different aspect ratios are prepared using the growth-directing surfactant, cetyltrimethylammonium bromide (CTAB), which forms a bilayer on the gold nanorod surface. Toxicological assays of CTAB-capped nanorod solutions with human colon carcinoma cells (HT-29) reveal that the apparent cytotoxicity is caused by free CTAB in solution. Overcoating the nanorods with polymers substantially reduces cytotoxicity. The number of nanorods taken up per cell, for the different surface coatings, is quantitated by inductively coupled plasma mass spectrometry on washed cells; the number of nanorods per cell varies from 50 to 2300, depending on the surface chemistry. Serum proteins from the biological media, most likely bovine serum albumin, adsorb to gold nanorods, leading to all nanorod samples bearing the same effective charge, regardless of the initial nanorod surface charge. The results suggest that physiochemical surface properties of nanomaterials change substantially after coming into contact with biological media. Such changes should be taken into consideration when examining the biological properties or environmental impact of nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.