Multiple platelet-rich preparations have been reported to improve wound and bone healing, such as platelet-rich plasma (PRP) and platelet rich fibrin (PRF). The different methods employed during their preparation are important, as they influence the quality of the product applied to a wound or surgical site. Besides the general protocol for preparing the platelet-rich product (discussed in Part 1 of this review), multiple choices need to be considered during its preparation. For example, activation of the platelets is required for the release and enmeshment of growth factors, but the method of activation may influence the resulting matrix, growth factor availability, and healing. Additionally, some methods enrich leukocytes as well as platelets, but others are designed to be leukocyte-poor. Leukocytes have many important roles in healing and their inclusion in PRP results in increased platelet concentrations. Platelet and growth factor enrichment reported for the different types of platelet-rich preparations are also compared. Generally, TGF-β1 and PDGF levels were higher in preparations that contain leukocytes compared to leukocyte-poor PRP. However, platelet concentration may be the most reliable criterion for comparing different preparations. These and other criteria are described to help guide dental and medical professionals, in large and small practices, in selecting the best procedures for their patients. The healing benefits of platelet-rich preparations along with the low risk and availability of simple preparation procedures should encourage more clinicians to incorporate platelet-rich products in their practice to accelerate healing, reduce adverse events, and improve patient outcomes.
Nanomaterial production is expanding as new industrial and consumer applications are introduced. Nevertheless, the impacts of exposure to these compounds are not fully realized. The present study was designed to determine whether gestational nano-sized titanium dioxide exposure impacts cardiac and metabolic function of developing progeny. Pregnant Sprague-Dawley rats were exposed to nano-aerosols (~10 mg/m, 130- to 150-nm count median aerodynamic diameter) for 7-8 nonconsecutive days, beginning at gestational Physiological and bioenergetic effects on heart function and cardiomyocytes across three time points, fetal (gestational), neonatal (4-10 days), and young adult (6-12 wk), were evaluated. Functional analysis utilizing echocardiography, speckle-tracking based strain, and cardiomyocyte contractility, coupled with mitochondrial energetics, revealed effects of nano-exposure. Maternal exposed progeny demonstrated a decrease in E- and A-wave velocities, with a 15% higher E-to-A ratio than controls. Myocytes isolated from exposed animals exhibited ~30% decrease in total contractility, departure velocity, and area of contraction. Bioenergetic analysis revealed a significant increase in proton leak across all ages, accompanied by decreases in metabolic function, including basal respiration, maximal respiration, and spare capacity. Finally, electron transport chain complex I and IV activities were negatively impacted in the exposed group, which may be linked to a metabolic shift. Molecular data suggest that an increase in fatty acid metabolism, uncoupling, and cellular stress proteins may be associated with functional deficits of the heart. In conclusion, gestational nano-exposure significantly impairs the functional capabilities of the heart through cardiomyocyte impairment, which is associated with mitochondrial dysfunction. Cardiac function is evaluated, for the first time, in progeny following maternal nanomaterial inhalation. The findings indicate that exposure to nano-sized titanium dioxide (nano-TiO) during gestation negatively impacts cardiac function and mitochondrial respiration and bioenergetics. We conclude that maternal nano-TiO inhalation contributes to adverse cardiovascular health effects, lasting into adulthood.
Fused deposition modeling (FDM™), or three-dimensional (3D) printing has become routine in industrial, occupational and domestic environments. We have recently reported that 3D printing emissions (3DPE) are complex mixtures, with a large ultrafine particulate matter component. We and others have reported that inhalation of xenobiotic particles in this size range is associated with an array of cardiovascular dysfunctions. Sprague-Dawley rats were exposed to 3DPE aerosols via nose-only exposure for ~3 hours. Twenty-four hours later, intravital microscopy was performed to assess microvascular function in the spinotrapezius muscle. Endothelium-dependent and -independent arteriolar dilation were stimulated by local microiontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP). At the time of experiments, animals exposed to 3DPE inhalation presented with a mean arterial pressure of 125±4 mm Hg, and this was significantly higher than that for the sham-control group (94±3 mm Hg). Consistent with this pressor response in the 3DPE group, was an elevation of ~12% in resting arteriolar tone. Endothelium-dependent arteriolar dilation was significantly impaired after 3DPE inhalation across all iontophoretic ejection currents (0–27±15%, compared to sham-control: 15–120±21%). Endothelium-independent dilation was not affected by 3DPE inhalation. These alterations in peripheral microvascular resistance and reactivity are consistent with elevations in arterial pressure that follow 3DPE inhalation. Future studies must identify the specific toxicants generated by FDM™ that drive this acute pressor response.
Numerous studies have demonstrated that platelet-rich preparations applied to surgical sites, injuries, or wounds are a safe and effective way to promote soft tissue healing and bone growth. Various protocols have been developed for preparing platelet-rich preparations, with subtle but important differences between them. Unfortunately, only a minority of clinicians use platelet-rich preparations, such as platelet-rich plasma and platelet-rich fibrin, in their practice, possibly due to confusion about the different methods and their advantages and disadvantages. Therefore, the different types of preparations are described to help guide the selection of the best method for any size practice. Classic methods generally require large volumes of blood and can be expensive, complicated, and time-intensive. Simpler protocols have been developed recently, which require relatively inexpensive equipment and small blood volumes and, thus, may be more applicable for small clinical practices. Platelet-rich preparations accelerate healing at earlier time points to reduce discomfort and the potential for adverse outcomes, including infection, poor wound closure, and delays in forming strong bone for subsequent procedures (such as implants). However, platelet-rich preparations may also improve long-term outcomes in patients expected to have impaired healing, such as with lifestyle choices (eg, smoking), medications (eg, steroids), diseases (eg, diabetes, osteoporosis, atherosclerosis), and aging, by supplementing the deficient wound environment to restore proper healing. Therefore, both large and small clinical practices would benefit from utilizing platelet-rich preparations to enhance healing in their patients.
Maternal engineered nanomaterial (ENM) inhalation is associated with uterine vascular impairments and endocrine disruption that may lead to altered gestational outcomes. We have shown that nano-titanium dioxide (nano-TiO 2 ) inhalation impairs endothelium-dependent uterine arteriolar dilation in pregnant rats. However, the mechanism underlying this dysfunction is unknown. Due to its role as a potent vasoconstrictor and essential reproductive hormone, we examined how kisspeptin is involved in nano-TiO 2 -induced vascular dysfunction and placental efficiency. Pregnant Sprague Dawley rats were exposed (gestational day [GD] 10) to nano-TiO 2 aerosols (cumulative dose ¼ 525 6 16 lg; n ¼ 8) or sham exposed (n ¼ 6) and sacrificed on GD 20. Plasma was collected to evaluate estrogen (E 2 ), progesterone (P4), prolactin (PRL), corticosterone (CORT), and kisspeptin. Pup and placental weights were measured to calculate placental efficiency (grams fetus/gram placental). Additionally, pressure myography was used to determine uterine artery vascular reactivity. Contractile responses were assessed via cumulative additions of kisspeptin (1 Â 10 À9 to 1 Â 10 À4 M). Estrogen was decreased at GD 20 in exposed (11.08 6 3 pg/ml) versus sham-control rats (66.97 6 3 pg/ml), whereas there were no differences in P4, PRL, CORT, or kisspeptin. Placental weights were increased in exposed (0.99 6 0.03 g) versus sham-control rats (0.70 6 0.04 g), whereas pup weights (4.01 6 0.47 g vs 4.15 6 0.15 g) and placental efficiency (4.5 6 0.2 vs 6.4 6 0.5) were decreased in exposed rats. Maternal ENM inhalation exposure augmented uterine artery vasoconstrictor responses to kisspeptin (91.2%62.0 vs 98.6%60.10). These studies represent initial evidence that pulmonary maternal ENM exposure perturbs the normal gestational endocrine vascular axis via a kisspeptin-dependent mechanism, and decreased placental, which may adversely affect health outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.