This paper describes a polynomial decay rate of the solution of the Kirchhoff type in viscoelasticity with logarithmic nonlinearity, where an asymptotically-stable result of the global solution is obtained taking into account that the kernel is not necessarily decreasing.
In this paper, we are going to deal with the nonlocal mixed boundary value problem for the Moore‐Gibson‐Thompson equation. Galerkin method was the main used tool for proving the solvability of the given nonlocal problem.
This work deals with the study of a new class of nonlinear viscoelastic Kirchhoff equation with Balakrishnan‐Taylor damping and logarithmic nonlinearity. A decay result of the energy of solutions for the problem without imposing the usual relation between a certain relaxation function and its derivative is established. This result generalizes earlier ones to an arbitrary rate of decay, which is not necessarily of exponential or polynomial decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.