Summary
In this paper, the problem of social distancing in the spread of infectious diseases in the human network is extended by optimal control and differential game approaches. Hear, SEAIR model on simulation network is used. Total costs for both approaches are formulated as objective functions. SEAIR dynamics for group k that contacts with k individuals including susceptible, exposed, asymptomatically infected, symptomatically infected and improved or safe individuals is modeled. A novel random model including the concept of social distancing and relative risk of infection using Markov process is proposed. For each group, an aggregate investment is derived and computed using adjoint equations and maximum principle. Results show that for each group, investments in the differential game are less than investments in an optimal control approach. Although individuals' participation in investment for social distancing causes to reduce the epidemic cost, the epidemic cost according to the second approach is too much less than the first approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.