Some species of Trichoderma have successfully been used in the commercial biological control of fungal pathogens, e.g., Sclerotinia sclerotiorum, an economically important pathogen of common beans (Phaseolus vulgaris L.). The objectives of the present study were (1) to provide molecular characterization of Trichoderma strains isolated from the Brazilian Cerrado; (2) to assess the metabolic profile of each strain by means of Biolog FF Microplates; and (3) to evaluate the ability of each strain to antagonize S. sclerotiorum via the production of cell wall-degrading enzymes (CWDEs), volatile antibiotics, and dual-culture tests. Among 21 isolates, we identified 42.86% as Trichoderma asperellum, 33.33% as Trichoderma harzianum, 14.29% as Trichoderma tomentosum, 4.76% as Trichoderma koningiopsis, and 4.76% as Trichoderma erinaceum. Trichoderma asperellum showed the highest CWDE activity. However, no species secreted a specific group of CWDEs. Trichoderma asperellum 364/01, T. asperellum 483/02, and T. asperellum 356/02 exhibited high and medium specific activities for key enzymes in the mycoparasitic process, but a low capacity for antagonism. We observed no significant correlation between CWDE and antagonism, or between metabolic profile and antagonism. The diversity of Trichoderma species, and in particular of T. harzianum, was clearly reflected in their metabolic profiles. Our findings indicate that the selection of Trichoderma candidates for biological control should be based primarily on the environmental fitness of competitive isolates and the target pathogen.
-The objective of this work was to evaluate isolates of Trichoderma harzianum regarding biocontrol of common bean seed-borne pathogens, plant growth promotion, and rhizosphere competence. Five isolates of T. harzianum were evaluated and compared with commercial isolate (Ecotrich), Carboxin+Thiram, and an absolute control. Bean seeds of the cultivar Jalo Precoce, contaminated with Aspergillus, Cladosporium, and Sclerotinia sclerotiorum, were microbiolized with antagonists, and seed health tests were carried out. Isolates were evaluated on autoclaved substrate and in field conditions. Ten days after sowing (DAS), plant length was measured. To test rhizosphere competence, isolates were applied in boxes containing autoclaved washed sand, and root colonization was evaluated at 10 DAS, using five plants per box. The most effective isolates in the seed health tests were: CEN287 and CEN289 to control Aspergillus; the commercial isolate to control Cladosporium; and CEN287 and CEN316 to control S. sclerotiorum. Isolates CEN289 and CEN290 promoted bean growth in greenhouse and field. Seed treatment with T. harzianum reduces the incidence of Aspergillus, Cladosporium, and S. sclerotiorum in 'Jalo Precoce' common bean seeds.
-The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris). Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306) and a control treatment were included. Foliar applications at 2x10 9 conidia mL -1 were performed at 42 and 52 days after sowing (DAS), in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.
Soybean is one of the main crop species grown in the world. However, there is a decline in productivity due to the various types of stress, including the nematodes Heterodera glycines and Pratylenchus brachyurus. The objectives were to determine the best spectral band for detecting H. glycines and P. brachyurus at the beginning of flowering (R1). Soil and root sampling was conducted at nine sampling sites in each of the five nematode-infested regions, totaling 45 sampling points. Flights were made at all regions using Phantom 4 Advanced, Sequoia and 14-band customized Sentera. For H. glycines, the red spectral band best explained the variability on soil and root nematode counts as well as the second stage of juveniles in soil. For P. brachyurus, Sentera RedEdge best explained the variability in root nematode counts and Sequoia NIR best explained soil juveniles. A multiple linear regression model using spectral data for detecting P. brachyurus and H. glycines improved R² compared to simple linear regressions. At flowering growth stage (R1), soybean spectral reflectance was associated with the number of H. glycines and P. brachyurus on soil and roots using low-cost and multispectral sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.