Number of connected devices is steadily increasing and these devices continuously generate data streams. Real-time processing of data streams is arousing interest despite many challenges. Clustering is one of the most suitable methods for real-time data stream processing, because it can be applied with less prior information about the data and it does not need labeled instances. However, data stream clustering differs from traditional clustering in many aspects and it has several challenging issues. Here, we provide information regarding the concepts and common characteristics of data streams, such as concept drift, data structures for data streams, time window models and outlier detection. We comprehensively review recent data stream clustering algorithms and analyze them in terms of the base clustering technique, computational complexity and clustering accuracy. A comparison of these algorithms is given along with still open problems. We indicate popular data stream repositories and datasets, stream processing tools and platforms. Open problems about data stream clustering are also discussed. Keywords Data streams • Data stream clustering • Real-time clustering • 1 Introduction More devices including sensors are becoming interconnected and interconnected devices continuously generate streams of data at high speed. Offline processing of
Number of connected devices is steadily increasing and this trend is expected to continue in the near future. Connected devices continuously generate data streams and the data streams may often be high dimensional and contain concept drift. Clustering is one of the most suitable methods for real-time data stream processing, since clustering can be applied with less prior information about the data. Also, data embedding makes the visualization of high dimensional data possible and may simplify clustering process. There exist several data stream clustering algorithms in the literature; however, no data stream embedding method exists. Uniform Manifold Approximation and Projection (UMAP) is a data embedding algorithm that is suitable to be applied on stationary (stable) data streams, though it cannot adapt concept drift. In this study, we describe a novel method EmCStream, to apply UMAP on evolving (nonstationary) data streams, to detect and adapt concept drift and to cluster embedded data instances using a distance or partitioning-based clustering algorithm. We have evaluated EmCStream against the state-of-the-art stream clustering algorithms using both synthetic and real data streams containing concept drift. EmCStream outperforms DenStream and CluStream, in terms of clustering quality, on both synthetic and real evolving data streams. Datasets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.