Congenital adrenal hyperplasia (CAH), screened for in neonates, is the second most common endocrinopathy after congenital hypothyroidism.Newborn screening for CAH due to CYP21A2 deficiency is performed by immunologic assay for 17-hydroxyprogesterone (17-OHP). The second-tier test for confirmation of diagnosis is carried out on recall venous blood sample from screen positives measuring 17-OHP, or other metabolites of steroid metabolism by liquid chromatography–tandem mass spectroscopy. However, as steroid metabolism is dynamic, it can affect these parameters even in the recall sample of a stressed neonate. Moreover, there is some time delay in recalling the neonate for repeat testing. Reflex genetic analysis of blood spot from the initial Guthrie cards of screen positive neonates, if used for confirmatory testing, can avoid this time delay as well as the effect of stress on steroid metabolism. In this study, we used Sanger sequencing and MLPA in a reflex manner for molecular genetic analysis to confirm CYP21A2-mediated CAH. Out of 220,000 newborns screened, 97 were positive on the initial biochemical screen, of which 54 were confirmed true positives with genetic reflex testing, giving incidence of CAH as 1:4074. Point mutations were more common than deletions, indicating that Sanger sequencing should be used ahead of MLPA for molecular diagnosis in India. Amongst the variants detected, the most common was I2G-Splice variant (44.5%), followed by c.955C>T (p.Gln319Ter) (21.2%); Del 8 bp and c.-113G>A were detected with frequencies of 20.3% and 20%, respectively. In conclusion, reflex genetic testing is an effective strategy for identifying true positives in CAH screening in neonates. This will obviate need for recall samples and also aid effective counselling and timely prenatal diagnosis in the future. In Indian newborns, as point mutations are more common than large deletions, Sanger sequencing should be the initial method of choice for genotyping, ahead of MLPA.
Forty novel HLA class I and class II alleles were identified in umbilical cord blood (UCB) samples and categorized based on various types of mutations: non‐synonymous, synonymous, frameshift, and premature termination codon. This study described 14 novel HLA‐A alleles, 9 novel HLA‐B alleles, 4 novel HLA‐C alleles, 3 novel HLA‐DRB1 alleles and 10 novel HLA‐DQB1 alleles. Comparing the new allele sequence with the most homologous sequence, 60% of the novel alleles exhibited non‐synonymous substitution, 32.5% observed with synonymous substitution, 5% displayed premature stop codon, and 2.5% presented with frameshift mutation. The majority of the new alleles contained a single nucleotide variation when compared with the most similar sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.