We studied by light scattering and small angle x-rays scattering (SAXS) conformations and solvation of plant tannins (oligomers and polymers) in mixed water-ethanol solutions. Their structures are not simple linear chains but contain about 6% of branching. Ab initio reconstruction reveals that monomers within a branch are closely bound pairwise. The chains are rather rigid, with the Kuhn length b = 13+/-3 nm, corresponding to about 35 linearly bound monomers. Contribution of solvation layer to SAXS intensity varies in a nonmonotonic way with ethanol content phi(A), which is an indication of amphipathic nature of tannin molecules. Best solvent composition phi(A)(B) is a decreasing function of polymerization degree N, in agreement with increasing water solubility of tannins with N. Polymers longer than b present a power-law behavior I approximately Q(-d) in the SAXS profile at high momentum transfer Q. The monotonic decrease in d with increasing phi(A) (from 2.4 in water to 1.9 in ethanol) points that the tannins are more compact in water than in ethanol, presumably due to attractive intramolecular interactions in water. Tannins were then oxidized in controlled conditions similar to real biological or food systems. Oxidation does not produce any intermolecular condensation, but generates additional intramolecular links. Some oxidation products are insoluble in water rich solvent. For that reason, we identify these species as a fraction of natural tannins called "T1" in the notation of Zanchi et al. [Langmuir 23, 9949 (2007)]. Within the fraction left soluble after oxidation, conformations of polymeric tannins, despite their higher rigidity, remain sensitive to solvent composition.
Interactions of proteins with phenolic compounds occur in food products containing vegetable sources, such as cocoa, cereals, or yogurts containing fruit. Such interactions can modify protein digestion and protein industrial properties. Noncovalent interactions between globular proteins (proteins important in industry) and procyanidins (phenolic compounds present in large quantity in fruits) were studied. The affinity constants between procyanidins of various average degrees of polymerization (DP) and lysozyme or alpha-lactalbumin were measured by isothermal titration calorimetry. The effects of these interactions on protein solubility and foam properties were examined using alpha-lactalbumin and BSA. Weak interactions were found with epicatechin and procyanidin dimers. Procyanidins of n = 5.5 and n = 7.4 showed medium (1.5 x 10(5) M(-1)) and high (8.69 x 10(9) M(-1)) affinities, respectively, for alpha-lactalbumin at pH 5.5, with n the average number of subunits per oligomer. A positive cooperativity of binding at low procyanidin:protein molar ratios was observed. The affinities of alpha-lactalbumin and lysozyme for procyanidins increased when the pH was close to the isoelectric pH. Solubility of lysozyme was strongly decreased by procyanidins of n = 5.5, whereas alpha-lactalbumin and BSA were less affected. Protein solubility in the presence of procyanidins was not affected by increased ionic strength but increased slightly with temperature. Procyanidins of n = 5.5 and n = 7.4 stabilized the average bubble diameter of foam formed with alpha-lactalbumin but had no effect on foam made from BSA. These results indicate that procyanidins of medium can lead to an undesirable decrease of protein solubility, but may play a positive role in foam stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.