Bartonella spp. are facultative intracellular bacteria associated with several emerging diseases in humans and animals. B. henselae causes cat-scratch disease and is increasingly associated with several other syndromes, particularly ocular infections and endocarditis. Cats are the main reservoir for B. henselae and the bacteria are transmitted to cats by cat fl eas. However, new potential vectors are suspected of transmitting B. henselae, in particular, Ixodes ricinus, the most abundant ixodid tick that bites humans in western Europe. We used a membranefeeding technique to infect I. ricinus with B. henselae and demonstrate transmission of B. henselae within I. ricinus across developmental stages, migration or multiplication of B. henselae in salivary glands after a second meal, and transmission of viable and infective B. henselae from ticks to blood. These results provide evidence that I. ricinus is a competent vector for B. henselae.
Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.
Helminth parasites are of considerable medical and economic importance. Studies
of the immune response against helminths are of great interest in understanding
interactions between the host immune system and parasites. Effector immune
mechanisms against tissue-dwelling helminths and helminths localized in the
lumen of organs, and their regulation, are reviewed. Helminth infections are
characterized by an association of Th2-like and Treg responses. Worms are able
to persist in the host and are mainly responsible for chronic infection despite a
strong immune response developed by the parasitized host. Two types of
protection against the parasite, namely, premune and partial immunities, have been
described. Immune responses against helminths can also participate in
pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host
and parasite by controlling immunopathologic disorders and parasite persistence.
Consequences of the modified Th2-like responses on co-infection, vaccination, and
inflammatory diseases are discussed.
Although Babesia divergens is the the principal confirmed zoonotic Babesia sp. in Europe, there are gaps in our knowledge of its biology and transmission by the tick Ixodes ricinus. In order to reproduce the part of the parasite cycle that occurs in the vector, an in vitro animal skin feeding technique on blood containing in vitro cultivated B. divergens was developed. Parasite DNA was detected in all samples of salivary glands of nymphs and adults that had fed on parasitized blood as larvae and nymphs, respectively, indicating acquisition as well as a transtadial persistence of B. divergens. PCR performed on eggs and larvae produced by females that had fed on parasitized blood demonstrated the existence of a transovarial transmission of the parasite. Gorging B. divergens infected larvae on non-infected gerbils showed persistance of the parasite over moulting into the resulting nymphs. These results indicate that the parasitic stages infective for the vector (i.e. the sexual stages) can be produced in vitro. To our knowledge, this is the first report of artificial feeding of I. ricinus via membrane as well as in vitro transmission of B. divergens to its vector. The opportunities offered by the use of such a transmission model of a pathogen by I. ricinus are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.