This study examined in pubescent swimmers the effects on front crawl performances of a 6-week plyometric training (PT) in addition to the habitual swimming program. Swimmers were assigned to a control group (n = 11, age: 14.1 ± 0.2 years; G(CONT)) and a combined swimming and plyometric group (n = 12, age: 14.3 ± 0.2 years; GSP), both groups swimming 5.5 h · wk(-1) during a 6-week preseason training block. In the GSP, PT consisted of long, lateral high and depth jumps before swimming training 2 times per week. Pre and posttests were performed by jump tests (squat jump [SJ], countermovement jump [CMJ]) and swim tests: a gliding task, 400- and 50-m front crawl with a diving start (V400 and V50, m · s(-1)), and 2 tests with a water start without push-off on the wall (25 m in front crawl and 25 m only with kicks). Results showed improvement only for GSP for jump tests (Δ = 4.67 ± 3.49 cm; Δ = 3.24 ± 3.17 cm; for CMJ and SJ, respectively; p < 0.05) and front crawl tests (Δ = 0.04 ± 0.04 m · s(-1); Δ = 0.04 ± 0.05 m · s(-1); for V50 and V400, respectively; p < 0.05). Significant correlations were found for GSP between improvements in SJ and V50 (R = 0.73, p < 0.05). Results suggested a positive effect of PT on specific swimming tasks such as dive or turn but not in kicking propulsion. Because of the practical setup of the PT and the relevancy of successful starts and turns in swimming performances, it is strongly suggested to incorporate PT in pubescent swimmers' training and control it by jump performances.
The purpose of the present study was to define the degree of muscular activation while walking in water in order to aid rehabilitation therapists in their choice of exercises for daily clinical practice in aquatherapy. This study compares the electromyographic (EMG) activity of the rectus femoris, the soleus of the right lower limb and the contra-lateral lumbar erector spinae, during gait in water and on dry ground. The study was carried out on a group of seven healthy female subjects without past rachidian pathology. EMG recordings in water were taken with immersion to the umbilicus at "comfortable" speed. A total of five recordings were made at this speed, in water and on dry ground, with a one-minute rest between recordings. Integrated EMG results, averaged on eight gait cycles, show, for all the subjects, more erector spinae activity in water than on the ground ( pϽ0.01). Soleus activity is greater during gait on dry ground for the whole group (pϽ0.01). For four subjects, the electromyographic (EMG) activity of the rectus femoris over the entire cycle is greater than that exhibited on dry ground.In the two experimental situations, no differences have been found either on amplitudinal peaks or on the shape of the patterns. The speed and gait cycle length are reduced in water (60% and 25%). Walking in water at an umbilical level increases the activity of the erector spinae and activates the rectus femoris to levels near to or higher than walking on dry ground.These data should be taken into account by the physiotherapist when designing a rehabilitation programme.
These results suggested that postural control is improved in static conditions and decreased in dynamic conditions. Therapeutic mobilization of feet and ankles in the elderly provides an immediate improvement in joint range of movement in dorsal and plantar flexion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.