A protein-trap screen using the Drosophila neuromuscular junction (NMJ) as a model synapse was performed to identify genes that control synaptic structure or plasticity. We found that Shaggy (Sgg), the Drosophila homolog of the mammalian glycogen synthase kinases 3 ␣ and , two serine-threonine kinases, was concentrated at this synapse. Using various combinations of mutant alleles of shaggy, we found that Shaggy negatively controlled the NMJ growth. Moreover, tissue-specific expression of a dominant-negative Sgg indicated that this kinase is required in the motoneuron, but not in the muscle, to control NMJ growth. Finally, we show that Sgg controlled the microtubule cytoskeleton dynamics in the motoneuron and that Futsch, a microtubule-associated protein, was required for Shaggy function on synaptic growth.
In this study, we analyze for the first time endoplasmic reticulum (ER) dynamics and organization during oogenesis and embryonic divisions of Drosophila melanogaster using a Protein Disulfide Isomerase (PDI) GFP chimera protein. An accumulation of ER material into the oocyte takes place during the early steps of oogenesis. The compact organization of ER structures undergoes a transition to an expanded reticular network at fertilization. At the syncytial stage, this network connects to the nuclear envelope as each nucleus divides. Time-lapse confocal microscopy on PDI transgenic embryos allowed us to characterize a rapid redistribution of the ER during the mitotic phases. The ER network is massively recruited to the spindle poles in prophase. During metaphase most of the ER remains concentrated at the spindle poles and shortly thereafter forms several layers of membranes along the ruptured nuclear envelope. Later, during telophase an accumulation of ER material occurs at the spindle equator. We also analyzed the subcellular organization of the ER network at the ultrastructural level, allowing us to corroborate the results from confocal microscopy studies. This dynamic redistribution of ER suggests an unexpected regulatory function for this organelle during mitosis.
In this study we describe a novel Drosophila protein Jupiter, which shares properties with several structural microtubule-associated proteins (MAPs) including TAU, MAP2, MAP4. Jupiter is a soluble unfolded molecule with the high net positive charge, rich in Glycine. It possesses two degenerated repeats around the sequence PPGG, separated by a Serine-rich region. Jupiter associates with microtubules in vitro and, fused with the green fluorescent protein (GFP), is an excellent marker to follow microtubule dynamics in vivo. In a jupiter transgenic Drosophila strain generated by the "protein-trap" technique, Jupiter:GFP fusion protein localizes to the microtubule network through the cell cycle at the different stages of development. We found particularly high Jupiter:GFP concentrations in the young embryo, larval nervous system, precursors of eye photoreceptors and adult ovary. Moreover, from jupiter:gfp embryos we have established two permanent cell lines presenting strongly fluorescent microtubules during the whole cell cycle. In these cells, the distribution of the Jupiter:GFP fusion protein reproduces microtubule behavior upon treatment by the drugs colchicine and taxol. The jupiter cell lines and fly strain should be of wide interest for biologists interested in in vivo analysis of microtubule dynamics.
Wolbachia are gram-negative, obligate, intracellular bacteria carried by a majority of insect species worldwide. Here we use a Wolbachia-infected Drosophila cell line and genome-wide RNA interference (RNAi) screening to identify host factors that influence Wolbachia titer. By screening an RNAi library targeting 15,699 transcribed host genes, we identified 36 candidate genes that dramatically reduced Wolbachia titer and 41 that increased Wolbachia titer. Host gene knockdowns that reduced Wolbachia titer spanned a broad array of biological pathways including genes that influenced mitochondrial function and lipid metabolism. In addition, knockdown of seven genes in the host ubiquitin and proteolysis pathways significantly reduced Wolbachia titer. To test the in vivo relevance of these results, we found that drug and mutant inhibition of proteolysis reduced levels of Wolbachia in the Drosophila oocyte. The presence of Wolbachia in either cell lines or oocytes dramatically alters the distribution and abundance of ubiquitinated proteins. Functional studies revealed that maintenance of Wolbachia titer relies on an intact host Endoplasmic Reticulum (ER)-associated protein degradation pathway (ERAD). Accordingly, electron microscopy studies demonstrated that Wolbachia is intimately associated with the host ER and dramatically alters the morphology of this organelle. Given Wolbachia lack essential amino acid biosynthetic pathways, the reliance of Wolbachia on high rates of host proteolysis via ubiquitination and the ERAD pathways may be a key mechanism for provisioning Wolbachia with amino acids. In addition, the reliance of Wolbachia on the ERAD pathway and disruption of ER morphology suggests a previously unsuspected mechanism for Wolbachia's potent ability to prevent RNA virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.