Infection with the obligate intracellular protozoan Leishmania is thought to be initiated by direct parasitization of macrophages, but the early events following transmission to the skin by vector sand flies have been difficult to examine directly. Using dynamic intravital microscopy and flow cytometry, we observed a rapid and sustained neutrophilic infiltrate at localized sand fly bite sites. Invading neutrophils efficiently captured Leishmania major (L.m.) parasites early after sand fly transmission or needle inoculation, but phagocytosed L.m. remained viable and infected neutrophils efficiently initiated infection. Furthermore, neutrophil depletion reduced, rather than enhanced, the ability of parasites to establish productive infections. Thus, L.m. appears to have evolved to both evade and exploit the innate host response to sand fly bite in order to establish and promote disease.
Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.
Leishmaniasis is transmitted between mammalian hosts by the bites of bloodsucking vector sand flies. The dose of parasites transmitted to the mammalian host has never been directly determined. We developed a real-time PCR-based method to determine the number of Leishmania major parasites inoculated into the ears of living mice during feeding by individual infected flies (Phlebotomus duboscqi). The number of parasites transmitted varied over a wide range in the 58 ears in which Leishmania were detected and demonstrated a clear bimodal distribution. Most of the infected mice were inoculated with a low dose of <600 parasites. One in four received a higher dose of >1,000 and up to 100,000 cells. High-dose transmission was associated with a heavy midgut infection of >30,000 parasites, incomplete blood feeding, and transmission of a high percentage of the parasite load in the fly. To test the impact of inoculum size on infection outcome, we compared representative high-(5,000) and low-(100) dose intradermal needle infections in the ears of C57BL/6 mice. To mimic natural transmission, we used sand fly-derived metacyclic forms of L. major and preexposed the injection site to the bites of uninfected flies. Large lesions developed rapidly in the ears of mice receiving the high-dose inoculum. The low dose resulted in only minor pathology but a higher parasite titer in the chronic phase, and it established the host as an efficient long-term reservoir of infection back to vector sand flies.leishmaniasis ͉ vectors ͉ bites ͉ parasites
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.