Current estimates of soil C storage potential are based on models or factors that assume linearity between C input levels and C stocks at steady-state, implying that SOC stocks could increase without limit as C input levels increase. However, some soils show little or no increase in steady-state SOC stock with increasing C input levels suggesting that SOC can become saturated with respect to C input. We used long-term field experiment data to assess alternative hypotheses of soil carbon storage by three simple models: a linear model (no saturation), a one-pool whole-soil C saturation model, and a two-pool mixed model with C saturation of a single C pool, but not the whole soil. The one-pool C saturation model best fit the combined data from 14 sites, four individual sites were best-fit with the linear model, and no sites were best fit by the mixed model. These results indicate that existing agricultural field experiments generally have too small a range in C input levels to show saturation behavior, and verify the accepted linear relationship between soil C and C input used to model SOM dynamics. However, all sites combined and the site with the widest range in C input levels were best fit with the C-saturation model. Nevertheless, the same site produced distinct effective stabilization capacity curves rather than an absolute C saturation level. We conclude that the saturation of soil C does occur and therefore the greatest efficiency in soil C sequestration will be in soils further from C saturation.
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO 2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron-and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to
The relationship between organic matter (OM) lability and temperature sensitivity is disputed, with recent observations suggesting that responses of relatively more resistant OM to increased temperature could be greater than, equivalent to, or less than responses of relatively more labile OM. This lack of clear understanding limits the ability to forecast carbon (C) cycle responses to temperature changes. Here, we derive a novel approach (denoted Q 10Àq ) that accounts for changes in OM quality during decomposition and use it to analyze data from three independent sources. Results from new laboratory soil incubations (labile Q 10Àq 5 2.1 AE 0.2; more resistant Q 10Àq 5 3.8 AE 0.3) and reanalysis of data from other soil incubations reported in the literature (labile Q 10Àq 5 2.3; more resistant Q 10Àq 5 3.3) demonstrate that temperature sensitivity of soil OM decomposition increases with decreasing soil OM lability. Analysis of data from a cross-site, field litter bag decomposition study (labile Q 10Àq 5 3.3 AE 0.2; resistant Q 10Àq 5 4.9 AE 0.2) shows that litter OM follows the same pattern, with greater temperature sensitivity for more resistant litter OM. Furthermore, the initial response of cultivated soils, presumably containing less labile soil OM (Q 10Àq 5 2.4 AE 0.3) was greater than that for undisturbed grassland soils (Q 10Àq 5 1.7 AE 0.1). Soil C losses estimated using this approach will differ from previous estimates as a function of the magnitude of the temperature increase and the proportion of whole soil OM comprised of compounds sensitive to temperature over that temperature range. It is likely that increased temperature has already prompted release of significant amounts of C to the atmosphere as CO 2 . Our results indicate that future losses of litter and soil C may be even greater than previously supposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.