The steroidogenic acute regulatory protein (StAR) is the major entrance for cholesterol in mitochondria under acute stimulation. Under such circumstances, dysfunctional StAR activity can ultimately lead to lipoid congenital adrenal hyperplasia (LCAH). A complete understanding of the StAR's molecular structure and mechanism is essential to comprehend LCAH. Thus far, there is no mechanistic model that can explain experimental results at the molecular level. This is partly due to the lack of the molecular structure of StAR. The closest approximation to the StAR molecular structure is the human MLN64 which has a similar activity to StAR, has a highly homologous primary structure and for which an X-ray structure is known. In this context, we have modeled the structure of StAR through standard homology modeling procedures based on the MLN64 structure. Our StAR model shows the presence of a hydrophobic cavity of 783·9 Å 2 in surface area, large enough to fit one molecule of cholesterol. In addition, we have identified a unique charged pair, as in MLN64, lining the surface of the cavity and which could play a key role in the binding of cholesterol through the formation of an H-bond with its OH moiety. This suggests that the cholesterol-binding site of StAR is located inside this cavity. Taking into account that internal cavities are destabilizing to native protein structures and that the lining of the cavity has to become accessible in order to allow cholesterol binding, we have explored the possibility that StAR could exist in equilibrium with partially unfolded states. Using a structure-based thermodynamics approach, we show that partially folded states (with an unfolded C-terminal α-helix, and an open cavity) can be significantly populated at equilibrium and therefore allow cholesterol binding. These results are supported by recent experiments that show a loss of StAR helical character upon binding of an analog of cholesterol. Moreover, we show that the replacement of the residues involved in the charged-pair located in the binding site results in the loss of StAR activity, supporting a key role for these residues. Taken together, our results are applicable to StAR functioning both in the mitochondrial intermembrane space as well as outside the mitochondria.
The occurence of spontaneous hybridization between Brassica napus (oilseed rape) and Raphanus raphanistrum (wild radish) was investigated under different density conditions in cages and open‐field experiments. Hybrids with wild radish as the seed parent were identified by screening for herbicide resistance belonging to rape. Small seed size and intermediate morphology were used to screen for hybrids with rape as the seed parent. Leaf isozyme patterns and flow cytometry provided confirmation of hybrids. Wild radish in an oilseed rape field produced as many as three interspecific hybrids per 100 plants. This is the first report of such a spontaneous event. The frequency of hybrids is expected to range from 0.006 to 0.2% of the total seed produced, at P = 0.05. Male‐sterile oilseed rape plants surrounded by wild radish can produce up to 37 hybrids per plant. Seed production of the F1 hybrids and their F2 descendants was up to 0.4% and 2%, respectively, of that of wild radish. Gene escape from transgenic oilseed rape to wild related species is discussed.
Background: The rapid burgeoning of available protein data makes the use of clustering within families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily related sequences. This identification reveals phylogenetic relationships, which provide prior knowledge to help researchers understand biological phenomena. A good evolutionary model is essential to achieve a clustering that reflects the biological reality, and an accurate estimate of protein sequence similarity is crucial to the building of such a model. Most existing algorithms estimate this similarity using techniques that are not necessarily biologically plausible, especially for hard-to-align sequences such as proteins with different domain structures, which cause many difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity measure based on matching amino acid subsequences. This measure, named SMS for Substitution Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences. Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein families. In the rest of the paper, we use the term "phylogenetic" in the sense of "relatedness of biological functions".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.