The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-100 experiment has been operating with 106 kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61-0.78 kg) thalliumdoped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
The performance of undoped NaI crystal of a high purity of 7 N grade, developed by Saint-Gobain Crystals for a dark matter search, was studied at liquid nitrogen temperature using avalanche photodiode. The measured quantities covered the light output expressed in the electron-hole (e-h) pair number, non-proportionality characteristics, energy resolution and tinally the intrinsic resolution of the studied crystals. In contrast to the previous study, the new crystals showed comparable non-proportionality curves to that known for NaI(TI) at room temperature and a poor energy resolution of about 8% for 662 keV gamma rays from 137CS source. The performed study highlights a role of undoped NaI crystals in a better understanding of limitations of energy resolution in scintillation detectors. A high sensitivity to traces of doping may help to find the way of a modification of non-proportionality of other scintillators by a selective doping or co-doping. A further study of slow components of the NaI light pulses and their influence on energy resolution may clear up its possible deterioration by defects in the crystal structures.
COSINE-200 is the next phase experiment of the ongoing COSINE-100 that aims to unambiguously verify the annual modulation signals observed by the DAMA experiment and to reach the world competitive sensitivity on the low-mass dark matter search. To achieve the physics goal of the COSINE-200, the successful production of the low-background NaI(Tl) detectors is crucial and it must begin from the mass production of the ultra-low background NaI powder. A clean facility for massproducing the pure-NaI powder has been constructed at the Center for Underground Physics (CUP) in Korea. Two years of operation determined efficient parameters of the mass purification and provided a total of 480 kg of the ultra-pure NaI powder in hand. The potassium concentration in the produced powders varied from 5.4 to 11 ppb, and the maximum production capacity of 35 kg per two weeks was achieved. Here, we report our operational practice with the mass purification of the NaI powder, which includes raw powder purification, recycling of the mother solution, and recovery of NaI from the residual melt that remained after crystal growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.