Iron dyshomeostasis can cause neuronal damage to iron-sensitive brain regions. Neurodegeneration with brain iron accumulation reflects a group of disorders caused by iron overload in the basal ganglia. High iron levels and iron related pathogenic triggers have also been implicated in sporadic neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple system atrophy (MSA). Iron-induced dyshomeostasis within vulnerable brain regions is still insufficiently understood. Here, we summarize the modes of action by which iron might act as primary or secondary disease trigger in neurodegenerative disorders. In addition, available treatment options targeting brain iron dysregulation and the use of iron as biomarker in prodromal stages are critically discussed to address the question of cause or consequence.
In neurodegenerative proteinopathies, intracellular inclusions are histopathologically and ultrastructurally heterogeneous but the significance of this heterogeneity is unclear. Patient- derived iPSC models, while promising for disease modeling, do not form analogous inclusions in a reasonable timeframe and suffer from limited tractability and scalability. Here, we developed an iPSC toolbox that utilizes piggyBac-based or targeted transgenes to rapidly induce CNS cells with concomitant expression of misfolding-prone proteins. The system is scalable and amenable to screening and longitudinal tracking at single-cell and single-inclusion resolution. For proof-of- principle, cortical neuron alpha-synuclein inclusionopathy models were engineered to form inclusions spontaneously or through exogenous seeding by alpha-synuclein fibrils. These models recapitulated known fibril- and lipid-rich inclusion subtypes in human brain, shedding light on their formation and consequences. Genetic-modifier and protein-interaction screens identified sequestered proteins in these inclusions, including RhoA, that were deleterious to cells when lost. This new iPSC platform should facilitate biological and drug discovery for neurodegenerative proteinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.