Objective: This study assessed whether high-resolution 7 T MRI allowed direct in vivo visualization of nigrosomes, substructures of the substantia nigra pars compacta (SNpc) undergoing the greatest and earliest dopaminergic cell loss in Parkinson disease (PD), and whether any disease-specific changes could be detected in patients with PD.Methods: Postmortem (PM) midbrains, 2 from healthy controls (HCs) and 1 from a patient with PD, were scanned with high-resolution T2*-weighted MRI scans, sectioned, and stained for iron and neuromelanin (Perl), TH, and calbindin. To confirm the identification of nigrosomes in vivo on 7 T T2*-weighted scans, we assessed colocalization with neuromelanin-sensitive T1-weighted scans. We then assessed the ability to depict PD pathology on in vivo T2*-weighted scans by comparing data from 10 patients with PD and 8 age-and sex-matched HCs.Results: A hyperintense, ovoid area within the dorsolateral border of the otherwise hypointense SNpc was identified in the HC brains on in vivo and PM T2*-weighted MRI. Location, size, shape, and staining characteristics conform to nigrosome 1. Blinded assessment by 2 neuroradiologists showed consistent bilateral absence of this nigrosome feature in all 10 patients with PD, and bilateral presence in 7/8 HC. Many MRI studies have reported Parkinson disease (PD)-associated changes in the substantia nigra (SN). 1 However, delineating the boundaries and assessing neurodegeneration in the SN remains challenging. 2 Recently developed ultra-high-field MRI systems produce very high spatial resolution T2*-weighted images providing detailed SN morphologic information. Correlation of high-resolution MRI data and histology 3 may enable a more precise definition of the boundaries and substructures of the SN in vivo, and hence a more accurate demonstration of PD pathology.The SN is divided into the pars compacta (SNpc), which is densely packed with neuromelanin-containing dopaminergic cells, and the pars reticulata (SNpr), which is formed by loose aggregations of GABAergic medium and large neurons. 4 The majority of neurons in the SNpc project to the neostriatum (putamen and caudate nucleus). Five distinct subgroups of dopaminecontaining neurons in calbindin-negative zones within the SNpc, nigrosomes, have been identified using immunostaining for calbindin D 28K . 5 The largest, nigrosome 1, is lens-shaped and situated along the rostral/caudal axis of the SN in its dorsal part, at caudal and intermediate levels ( figure 8 of Damier et al. 5 ; figure e-1 on the Neurology ® Web site at www.neurology.org). Postmortem (PM) studies have shown dopaminergic neuronal loss in PD to be higher in the
The growth of white matter during human adolescence shows a striking sexual dimorphism; the volume of white matter increases with age slightly in girls and steeply in boys. Here, we provide evidence supporting the role of androgen receptor (AR) in mediating the effect of testosterone on white matter. In a large sample of typically developing adolescents (n= 408, 204 males), we used magnetic resonance imaging and acquired T1-weighted and magnetization transfer ratio (MTR) images. We also measured plasma levels of testosterone and genotyped a functional polymorphism in the AR gene, namely the number of CAG repeats in exon 1 believed to be inversely proportional to the AR transcriptional activity. We found that the testosterone-related increase of white-matter volume was stronger in male adolescents with the lower versus higher number of CAG repeats in the AR gene, with testosterone explaining, respectively, 26 and 8% of variance in the volume. The MTR results suggest that this growth is not related to myelination; the MTR decreased with age in male adolescents. We speculate that testosterone affects axonal caliber rather than the thickness of the myelin sheath.
for the MAGNIMS Study Group IMPORTANCE The central vein sign has been proposed as a specific imaging biomarker for distinguishing between multiple sclerosis (MS) and not MS, mainly based on findings from ultrahigh-field magnetic resonance imaging (MRI) studies. The diagnostic value of the central vein sign in a multicenter setting with a variety of clinical 3 tesla (T) MRI protocols, however, remains unknown. OBJECTIVE To evaluate the sensitivity and specificity of various central vein sign lesion criteria for differentiating MS from non-MS conditions using 3T brain MRI with various commonly used pulse sequences. DESIGN, SETTING, AND PARTICIPANTS This large multicenter, cross-sectional study enrolled participants (n = 648) of ongoing observational studies and patients included in neuroimaging research databases of 8 neuroimaging centers in Europe. Patient enrollment and MRI data collection were performed between
The search for genes of complex traits is aided by the availability of multiple quantitative phenotypes collected in geographically isolated populations. Here we provide rationale for a large-scale study of gene-environment interactions influencing brain and behavior and cardiovascular and metabolic health in adolescence, namely the Saguenay Youth Study (SYS). The SYS is a retrospective study of long-term consequences of prenatal exposure to maternal cigarette smoking (PEMCS) in which multiple quantitative phenotypes are acquired over five sessions (telephone interview, home, hospital, laboratory, and school). To facilitate the search for genes that modify an individual's response to an in utero environment (i.e. PEMCS), the study is family-based (adolescent sibships) and is carried out in a relatively geographically isolated population of the Saguenay Lac-Saint-Jean (SLSJ) region in Quebec, Canada. DNA is acquired in both biological parents and in adolescent siblings. A genome-wide scan will be carried out with sib-pair linkage analyses, and fine mapping of identified loci will be done with family-based association analyses. Adolescent sibships (12-18 years of age; two or more siblings per family) are recruited in high schools throughout the SLSJ region; only children of French-Canadian origin are included. Based on a telephone interview, potential participants are classified as exposed or nonexposed prenatally to maternal cigarette smoking; the two groups are matched for the level of maternal education and the attended school. A total of 500 adolescent participants in each group will be recruited and phenotyped. The following types of datasets are collected in all adolescent participants: (1) magnetic resonance images of brain, abdominal fat, and kidneys, (2) standardized and computer-based neuropsychological tests, (3) hospital-based cardiovascular, body-composition and metabolic assessments, and (4) questionnaire-derived measures (e.g. life habits such as eating and physical activity; drug, alcohol use and delinquency; psychiatric symptoms; personality; home and school environment; academic and vocational attitudes). Parents complete a medical questionnaire, home-environment questionnaire, a handedness questionnaire, and a questionnaire about their current alcohol and drug use, depression, anxiety, and current and past antisocial behavior. To date, we have fully phenotyped a total of 408 adolescent participants. Here we provide the description of the SYS and, using the initial sample, we present information on ascertainment, demographics of the exposed and nonexposed adolescents and their parents, and the initial MRI-based assessment of familiality in the brain size and the volumes of grey and white matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.