Two rapeseed meals (RM1 and RM2), containing glucosinolates at a concentration of 26 and 40 micromol/g, respectively, were incorporated at increasing levels (10, 20, and 30% for RM1 and 30 and 50% for RM2) in diets of juvenile rainbow trout. Disturbances in the thyroid axis appeared after 14 days of feeding (with a dietary incorporation level of 10%). The dietary supplementation with T(3) or iodine induced an increase in plasma T(3) levels, compared to that in fish fed the RM diets, and reduced the deleterious effect of RM on growth. When trout were reared in seawater, there was also a slight increase in thyroid hormone levels. TSH treatment had no effect on the thyroid hormone plasma levels. The incorporation of 30% of RM1, which induced a lower dietary content of toxic compounds than RM2, led to a rapid decrease of plasma T(4) and T(3) levels, but growth was affected only after 6 months of feeding. During these studies, the deiodinase activities responded in a complex manner to restore plasma and tissue levels of T(3).
A human digestive strain of Bacteroides thetaiotaomicron was tested for its ability to metabolise sinigrin, a glucosinolate commonly found in Brassica vegetables. Gnotobiotic rats harbouring the bacterial strain were orally dosed with 50 micromol sinigrin. HPLC analysis of the digestive contents showed that sinigrin was degraded in the large bowel, where B. thetaiotaomicron was established at a high level. Concurrently, a hydrolysis product of sinigrin, allyl isothiocyanate, was identified by GC-MS analysis, following headspace solid-phase microextraction of the digestive contents; its production peaked at ca. 200 nmol, 12 h after dosing. This is the first study to demonstrate in vivo the involvement of a human colonic predominant bacterium in the bioconversion of a dietary glucosinolate to a potentially anticarcinogenic isothiocyanate.
BackgroundDuring processing in a desolventizer/toaster (DT), rapeseed meal (RSM) is heated to evaporate the hexane and to reduce the level of heat-labile anti-nutritional factors such as glucosinolates (GSL). However, excessive heat treatment may reduce amino acid (AA) content in addition to lower AA digestibility and availability in RSM. The objective of the present study was to produce from one batch of a 00-rapeseed variety (17 μmol GSL/g dry matter (DM), seed grade quality) five differently processed RSM under standardized and defined conditions in a pilot plant, and to determine the impact of these different treatments on protein solubility and chemical composition, in particular with regard to contents of AA including reactive Lys (rLys) and levels of total and individual GSL.MethodsFour RSM were exposed to wet toasting conditions (WetTC) with increasing residence time in the DT of 48, 64, 76, and 93 min. A blend of these four RSM was further processed, starting with saturated steam processing (< 100 °C) and followed by exposure to dry toasting conditions (DryTC) to further reduce the GSL content in this RSM.ResultsThe contents of neutral detergent fiber and neutral detergent fiber bound crude protein (CP) increased linearly (P < 0.05), as residence time of RSM in the DT increased from 48 to 93 min, whereas contents of total and most individual GSL and those of Lys, rLys, Cys, and the calculated ratio of Lys:CP and rLys:CP decreased linearly (P ≤ 0.05). The combination of wet heating and DryTC resulted in the lowest GSL content compared to RSM produced under WetTC, but was associated with lowest protein solubility.ConclusionsIt can be concluded that by increasing residence time in the DT or using alternative processing conditions such as wet heating combined with DryTC, contents of total and individual GSL in RSM can be substantially reduced. Further in vivo studies are warranted to elucidate if and to which extent the observed differences in protein quality and GSL content between RSM may affect digestibility and bioavailability of AA in monogastric animals.
BackgroundToasting during the production of rapeseed meal (RSM) decreases ileal crude protein (CP) and amino acid (AA) digestibility. The mechanisms that determine the decrease in digestibility have not been fully elucidated. A high protein quality, low-denatured, RSM was produced and toasted up to 120 min, with samples taken every 20 min. The aim of this study was to characterize secondary structure and chemical changes of proteins and glucosinolates occurring during toasting of RSM and the effects on its in vitro CP digestibility.ResultsThe decrease in protein solubility and the increase of intermolecular β-sheets with increasing toasting time were indications of protein aggregation. The contents of NDF and ADIN increased with increasing toasting time. Contents of arginine, lysine and O-methylisourea reactive lysine (OMIU-RL) linearly decreased with increasing toasting time, with a larger decrease of OMIU-RL than lysine. First-order reactions calculated from the measured parameters show that glucosinolates were degraded faster than lysine, OMIU-RL and arginine and that physical changes to proteins seem to occur before chemical changes during toasting. Despite the drastic physical and chemical changes noticed on the proteins, the coefficient of in vitro CP digestibility ranged from 0.776 to 0.750 and there were no effects on the extent of protein hydrolysis after 120 min. In contrast, the rate of protein hydrolysis linearly decreased with increasing toasting time, which was largely correlated to the decrease in protein solubility, lysine and OMIU-RL observed. Rate of protein hydrolysis was more than 2-fold higher for the untoasted RSM compared to the 120 min toasted material.ConclusionsIncreasing the toasting time for the production of RSM causes physical and chemical changes to the proteins that decrease the rate of protein hydrolysis. The observed decrease in the rate of protein hydrolysis could impact protein digestion and utilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.