To assess the effects of creep feed consumption on individual feed intake characteristics and performance of group-housed weaned pigs, 16 litters (149 piglets) were fed a commercial creep feed (3,040 kcal NE/kg, 15.2 g lysine/kg) supplemented with 1% chromic oxide. Another five litters (48 piglets) were not given access to creep feed (no-feed). Piglets were weaned at 28 d after birth. On d 18, 22, and 27 of age, fecal samples from all the piglets were taken using fecal loops. A green color of the feces indicated that the piglet had eaten creep feed. Piglets that had green-colored feces three times were considered as eaters. Piglets that never showed green-colored feces were considered as non-eaters. At weaning 22 piglets of each type (no-feed, non-eaters, and eaters) were selected based on BW, litter origin, and sex. These 66 pigs were assigned to six pens equipped with computerized feeding stations. Eaters, non-eaters, and no-feed pigs were equally divided over all six pens. After weaning a prestarter (d 0 to 13) and a starter diet (d 14 to 34) were offered for ad libitum consumption. The individual feed intake characteristics of latency time (interval between weaning and first feed intake) and initial feed intake (intake during the first 24 h following first feed intake) and performance traits were determined for all piglets. The pigs that were designated as eaters needed less time between weaning and first feed intake than the pigs that were designated as non-eaters and no-feed pigs (P = 0.04 and P = 0.06, respectively). Initial feed intake was not affected (P > 0.1) by feed intake prior to weaning. However, during d 0 to 8 the eaters had more visits per day during which feed was consumed than both the non-eaters and no-feed pigs. Averaged over the first 8 d after weaning, the ADFI and ADG of the eaters were higher than that of the non-eaters and no-feed pigs (P < 0.05). Averaged over the total 34-d period the effect of creep feed intake on postweaning ADFI was much less pronounced (P = 0.20), whereas ADG of the eaters was the highest (P < 0.05). Creep feed intake during the sucking period stimulates early postweaning feed intake as well as postweaning performance.
Dietary carbohydrate fibers are known to prevent immunological diseases common in Western countries such as allergy and asthma but the underlying mechanisms are largely unknown. Until now beneficial effects of dietary fibers are mainly attributed to fermentation products of the fibers such as anti-inflammatory short-chain fatty acids (SCFAs). Here, we found and present a new mechanism by which dietary fibers can be anti-inflammatory: a commonly consumed fiber, pectin, blocks innate immune receptors. We show that pectin binds and inhibits, toll-like receptor 2 (TLR2) and specifically inhibits the proinflammatory TLR2–TLR1 pathway while the tolerogenic TLR2–TLR6 pathway remains unaltered. This effect is most pronounced with pectins having a low degree of methyl esterification (DM). Low-DM pectin interacts with TLR2 through electrostatic forces between non-esterified galacturonic acids on the pectin and positive charges on the TLR2 ectodomain, as confirmed by testing pectin binding on mutated TLR2. The anti-inflammatory effect of low-DM pectins was first studied in human dendritic cells and mouse macrophages in vitro and was subsequently tested in vivo in TLR2-dependent ileitis in a mouse model. In these mice, ileitis was prevented by pectin administration. Protective effects were shown to be TLR2–TLR1 dependent and independent of the SCFAs produced by the gut microbiota. These data suggest that low-DM pectins as a source of dietary fiber can reduce inflammation through direct interaction with TLR2–TLR1 receptors.
Individual food intake characteristics and indicators of gut physiology of group-housed weanling pigs were measured in relation to pre-weaning consumption of creep food. Additionally, the effects of creep food consumption on pre-weaning body weight and gain were assessed. A total of 48 litters was used in two trials. From 11 days of age until weaning (day 28), all 48 litters were given a creep food (12·7 MJ net energy (NE) per kg, 15·2 g lysine per kg) supplemented with 10 g chromium III oxide per kg. Piglets showing green-coloured faeces on three sampling days were designated as good eaters, whereas piglets that never showed green faeces were labelled as non-eaters. Piglets having green faeces once or twice were designated as moderate eaters. Based on availability, body weight, litter origin, genotype and gender 29 good eaters, 32 moderate eaters and 29 non-eaters were selected in the first trial. In the second trial there were 30 good eaters, 33 moderate eaters, and 27 non-eaters. In each trial eight piglets of each creep-food eating type were immediately killed to serve as a reference group. The remaining piglets of each eating type were weaned and placed in pens equipped with computerized feeding stations so that distributions of body weight, litter origin, and gender were similar within pens. In each trial, eight pigs of each eating type were killed 5 days after weaning in order to determine villous heights and crypt depths in the proximal small intestine and volatile fatty acid (VFA) concentrations in the colon. While being suckled, body weight was not related to the pre-weaning consumption of creep food (P > 0·1) whereas average daily gain of the good eaters during the creep feeding period was higher (P 0·05) than that of the moderate and non-eaters. Both morphology measures and VFA concentrations on the day of weaning were unaffected (P > 0·1) by the pre-weaning food consumption. After weaning, food intake and gain of the total group of good eaters were higher (P 0·05) than that of the non-eaters, whereas villous height and villous height: crypt depth ratios did not differ (P > 0·1). Neither total VFA concentration nor the proportion of branched-chain VFA were affected by creep food consumption while being suckled. Total VFA concentration in the colon was positively associated with body-weight gain (P 0·001). This study confirms earlier findings that consumption of creep food while being suckled stimulates food intake and growth after weaning. However, the beneficial effects were not associated with a prevention of damage to morphology of the small intestine.
Feed intake characteristics of 192, 27-d-old weanling pigs housed in groups and given ad libitum access to feed and water were measured individually with the use of computerized feeding stations. The groups were either homogeneous or heterogeneous as to BW distribution; pigs of three defined initial BW classes were used (mean BW of 6.7, 7.9, or 9.3 kg). The effects of BW distribution, BW class, and sex were studied with regard to average performance traits, latency time (interval between weaning and first feed intake), initial feed intake (intake during the first 24 h following first feed intake), and daily increase in feed intake during the interval between first feed intake and the day on which energy intake met or exceeded 1.5 times the maintenance requirement. Homogeneous and heterogeneous groups had similar latency times, initial feed intakes, and daily increases in feed intake. For the period 0 to 34 d after weaning, ADFI and ADG were also similar for homogeneous and heterogeneous groups, but gain:feed ratio was greater (P < 0.05) in the homogeneous groups. Gilts had higher (P < 0.05) initial feed intakes than barrows and also had greater (P < 0.05) ADFI and ADG during the period 0 to 13 d after weaning. Pigs with average BW of 6.7 kg had higher (P < 0.05) initial feed intakes than their counterparts with average BW of 7.9 kg and 9.3 kg, but the daily increase in feed intake was similar for the three groups. The lighter pigs had more daily visits and a lower feed intake per visit and tended to have a shorter postweaning latency to the onset of feeding than the heavier pigs. This study indicates that the high variability in early feeding behavior among group-housed weanling pigs may be related to BW and sex.
The LMP, HMP, and aSBM, differently affected the digestion processes compared to the control diet and shaped the colonic microbiota from a Lactobacillus-dominating flora to a Prevotella-dominating community, with potential health-promoting effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.