Organic aerosols are a major fraction, often more than 50%, of the total atmospheric aerosol mass. The chemical composition of the total organic aerosol mass is poorly understood, although hundreds of compounds have been identified in the literature. High molecular weight compounds have recently gained much attention because this class of compounds potentially represents a major fraction of the unexplained organic aerosol mass. Here we analyze secondary organic aerosols, generated in a smog chamber from alpha-pinene ozonolysis with ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). About 450 compounds are detected in the mass range of m/z 200-700. The mass spectrum is clearly divided into a low molecular weight range (monomer) and a high molecular weight range, where dimers and trimers are distinguishable. Using the Kendrick mass analysis, the elemental composition of about 60% of all peaks could be determined throughout the whole mass range. Most compounds have high O:C ratios between 0.4 and 0.6. Small compounds (i.e., monomers) have a higher maximum O:C ratio than dimers and trimers, suggesting that condensation reactions with, for example, the loss of water are important in the oligomer formation process. A program developed in-house was used to determine exact mass differences between peaks in the monomer, dimer, and trimer mass range to identify potential monomer building blocks, which form the co-oligomers observed in the mass spectrum. A majority of the peaks measured in the low mass region of the spectrum (m/z < 300) is also found in the calculated results. For the first time the elemental composition of the majority of peaks over a wide mass range was determined using advanced data analysis methods for the analysis of ultra-high-resolution MS data. Possible oligomer formation mechanisms in secondary organic aerosols were investigated.
The chemical composition of organic atmospheric aerosols is only poorly understood. Although a significant fraction of organic aerosols consists of humic-like substances (HULIS), only little is known about this class of compound, and accurate quantification remains difficult, partly due to the lack of appropriate standards. Here, evaporative light-scattering detection (ELSD) was applied for the first time to quantify water-soluble HULIS in aerosol particles smaller than 1 microm. This detection method was shown to be suitable for the quantification of compounds with unknown structures and lacking appropriate quantification standards. As compared to organic carbon determination of isolated HULIS, no organic carbon/organic mass (OC/OM) conversion factor needs to be applied with ELSD and therefore eliminates this significant uncertainty factor of the OC/OM method, which is frequently used to quantify HULIS. Solid-phase extraction and size-exclusion chromatography were applied to separate inorganic ions and low molecular weight compounds from HULIS before ELSD quantification. The ELSD itself provides an additional separation step where low volatility HULIS are separated from high volatility, small compounds. Electrospray ionization mass spectrometry was used to identify the molecular weight range of the compounds quantified with ELSD. The most intensive peaks were in the range of m/z 200-500, with some masses upto m/z800. We showed that UV detection using fulvic acid as surrogate quantification standard underestimates the HULIS concentration by a factor of 1.1 to 2.5, which is in agreement with earlier studies. During a 6 week winter 2005-2006 campaign at a suburban site near Zurich, Switzerland, an average of 1.1 microg/m(3) HULIS was found, which is about4-6% of the total particle mass smaller than 1 microm (PM1) and 10-35% of the organic matter in PM1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.