According to the Weak Equivalence Principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10 −15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A non-vanishing result would correspond to a violation of the Equivalence Principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti, Pt) = [−1±9(stat)±9(syst)]×10−15 (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
The weak equivalence principle (WEP), stating that two bodies of different compositions and/or mass fall at the same rate in a gravitational field (universality of free fall), is at the very foundation of general relativity. The MICROSCOPE mission aims to test its validity to a precision of 10−15, two orders of magnitude better than current on-ground tests, by using two masses of different compositions (titanium and platinum alloys) on a quasi-circular trajectory around the Earth. This is realised by measuring the accelerations inferred from the forces required to maintain the two masses exactly in the same orbit. Any significant difference between the measured accelerations, occurring at a defined frequency, would correspond to the detection of a violation of the WEP, or to the discovery of a tiny new type of force added to gravity. MICROSCOPE’s first results show no hint for such a difference, expressed in terms of Eötvös parameter (both 1 uncertainties) for a titanium and platinum pair of materials. This result was obtained on a session with 120 orbital revolutions representing 7% of the current available data acquired during the whole mission. The quadratic combination of 1 uncertainties leads to a current limit on of about .
Deviations from standard general relativity are being intensively tested in various aspects. The MICROSCOPE space mission, which has recently been approved to be launched in 2016, aims at testing the universality of free fall with an accuracy better than 10 −15. The instrument has been developed and most of the subsystems have been tested to the level required for the detection of accelerations lower than one tenth of a femto-g. Two concentric test masses are electrostatically levitated inside the same silica structure and controlled on the same trajectory at better than 0.1Å. Any dissymmetry in the measured electrostatic pressures shall be analysed with respect to the Earth's gravity field. The nearly 300 kg heavy dedicated satellite is defined to provide a very steady environment to the experiment and a fine control of its attitude and of its drag-free motion along the orbit. Both the evaluations of the performance of the instrument and the satellite demonstrate the expected test accuracy. The detailed description of the experiment and the major driving parameters of the instrument, the satellite and the data processing are provided in this paper.
The MICROSCOPE mission aimed to test the Weak Equivalence Principle (WEP) to a precision of 10-15. The WEP states that two bodies fall at the same rate on a gravitational field independently of their mass or composition. In MICROSCOPE, two masses of different compositions (titanium and platinum alloys) are placed on a quasi-circular trajectory around the Earth. They are the test-masses of a double accelerometer. The measurement of their accelerations is used to extract a potential WEP violation that would occur at a frequency defined by the motion and attitude of the satellite around the Earth. This paper details the major drivers of the mission leading to the specification of the major subsystems (satellite, ground segment, instrument, orbit...). Building upon the measurement equation, we derive the objective of the test in statistical and systematic error allocation and provide the mission's expected error budget.
The MICROSCOPE mission aims to test the Weak Equivalence Principle (WEP) in orbit with an unprecendented precision of 10-15 on the Eövös parameter thanks to electrostatic accelerometers on board a drag-free microsatellite. The precision of the test is determined by statistical errors, due to the environment and instrument noises, and by systematic errors to which this paper is devoted. Sytematic error sources can be divided into three categories: external perturbations, such as the residual atmospheric drag or the gravity gradient at the satellite altitude, perturbations linked to the satellite design, such as thermal or magnetic perturbations, and perturbations from the instrument internal sources. Each systematic error is evaluated or bounded in order to set a reliable upper bound on the WEP parameter estimation uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.