According to the Weak Equivalence Principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10 −15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A non-vanishing result would correspond to a violation of the Equivalence Principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti, Pt) = [−1±9(stat)±9(syst)]×10−15 (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
The weak equivalence principle (WEP), stating that two bodies of different compositions and/or mass fall at the same rate in a gravitational field (universality of free fall), is at the very foundation of general relativity. The MICROSCOPE mission aims to test its validity to a precision of 10−15, two orders of magnitude better than current on-ground tests, by using two masses of different compositions (titanium and platinum alloys) on a quasi-circular trajectory around the Earth. This is realised by measuring the accelerations inferred from the forces required to maintain the two masses exactly in the same orbit. Any significant difference between the measured accelerations, occurring at a defined frequency, would correspond to the detection of a violation of the WEP, or to the discovery of a tiny new type of force added to gravity. MICROSCOPE’s first results show no hint for such a difference, expressed in terms of Eötvös parameter (both 1 uncertainties) for a titanium and platinum pair of materials. This result was obtained on a session with 120 orbital revolutions representing 7% of the current available data acquired during the whole mission. The quadratic combination of 1 uncertainties leads to a current limit on of about .
Deviations from standard general relativity are being intensively tested in various aspects. The MICROSCOPE space mission, which has recently been approved to be launched in 2016, aims at testing the universality of free fall with an accuracy better than 10 −15. The instrument has been developed and most of the subsystems have been tested to the level required for the detection of accelerations lower than one tenth of a femto-g. Two concentric test masses are electrostatically levitated inside the same silica structure and controlled on the same trajectory at better than 0.1Å. Any dissymmetry in the measured electrostatic pressures shall be analysed with respect to the Earth's gravity field. The nearly 300 kg heavy dedicated satellite is defined to provide a very steady environment to the experiment and a fine control of its attitude and of its drag-free motion along the orbit. Both the evaluations of the performance of the instrument and the satellite demonstrate the expected test accuracy. The detailed description of the experiment and the major driving parameters of the instrument, the satellite and the data processing are provided in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.