Although absence of the cytoskeletal protein dystrophin leads to dilated cardiomyopathy in humans, the functional role of dystrophin in cardiac muscle remains undefined. We have addressed the hypothesis that dystrophin could help protect the heart against injury and contractile dysfunction induced by mechanical stress. In normal and dystrophin‐deficient (mdx) mice, cardiac mechanical stress was first manipulated ex vivo in a perfused working heart preparation. Despite an afterload level in the normal physiologic range, ex vivo perfused mdx hearts developed severe contractile dysfunction and nonischemic tissue damage, as is shown by excessive LDH release without a rise in coronary lactate. Injury to dystrophin‐deficient hearts was significantly correlated with cardiac work, and reducing the afterload level improved contractility and prevented injury in mdx hearts studied ex vivo. The response to mechanical stress in vivo was also assessed by using the vital dye Evans blue, which penetrates into cardiomyocytes with a disrupted sarcolemma. In the mdx group only, cardiomyocyte injury was increased markedly by acute elevations of mechanical stress induced by isoproterenol or brief aortic occlusion. Strikingly accelerated mortality and cardiac necrosis were also observed in the mdx group subjected to chronically increased cardiac mechanical stress via subtotal aortic constriction. Taken together, our results provide the first direct evidence that dystrophin serves to protect cardiomyocytes from mechanical stress and workload‐induced damage. Accordingly, reducing cardiac work in patients with dystrophin deficiency could be beneficial not only in treating established cardiomyopathy, but also in preventing the onset of cardiac disease.
Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR–deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr −/− mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1) involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.
Strenuous resistive breathing induces plasma cytokines that do not originate from circulating monocytes. We hypothesized that cytokine production is induced inside the diaphragm in response to resistive loading. Anesthetized, tracheostomized, spontaneously breathing Sprague-Dawley rats were subjected to 1, 3, or 6 hours of inspiratory resistive loading, corresponding to 45-50% of the maximum inspiratory pressure. Unloaded sham-operated rats breathing spontaneously served as control animals. The diaphragm and the gastrocnemius muscles were excised at the end of the loading period, and messenger ribonucleic acid expression of tumor necrosis factor-alpha, tumor necrosis factor-beta, interleukin (IL)-1alpha, IL-1beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IFN-gamma, and two housekeeping genes was analyzed using multiprobe RNase protection assay. IL-6, IL-1beta, and, to lesser extents, tumor necrosis factor-alpha, IL-10, IFN-gamma, and IL-4 were significantly increased in a time-dependent fashion in the diaphragms but not the gastrocnemius of loaded animals or in the diaphragm of control animals. Elevation of protein levels of IL-6 and IL-1beta in the diaphragm of loaded animals was confirmed with immunoblotting. Immunostaining revealed IL-6 protein localization inside diaphragmatic muscle fibers. We conclude that increased ventilatory muscle activity during resistive loading induces differential elevation of proinflammatory and antiinflammatory cytokine gene expression in the ventilatory muscles.
The aims of this study were to assess the role of nitric oxide (NO) and the contribution of different NO synthase (NOS) isoforms in skeletal muscle contractile dysfunction in septic shock. Four groups of conscious rats were examined. Group 1 served as control; groups 2, 3, and 4 were injected with Escherichia coli endotoxin [lipopolysaccharide (LPS), 20 mg/kg ip] and killed after 6, 12, and 24 h, respectively. Protein expression was assessed by immunoblotting and immunostaining. LPS injection elicited a transient expression of the inducible NOS isoform, which peaked 12 h after LPS injection and disappeared within 24 h. This expression coincided with a significant increase in nitrotyrosine formation (peroxynitrite footprint). Muscle expression of the endothelial and neuronal NOS isoforms, by comparison, rose significantly and remained higher than control levels 24 h after LPS injection. In vitro measurement of muscle contractility 24 h after LPS injection showed that incubation with NOS inhibitor ( S-methyliosothiourea) restored the decline in submaximal force generation, whereas maximal muscle force remained unaffected. We conclude that NO plays a significant role in muscle contractile dysfunction in septic animals and that increased NO production is due to induction of the inducible NOS isoform and upregulation of constitutive NOS isoforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.